

NaviSys Technology - Your Location Partner

# Data Sheet / GE-315

# SiRFstarIII

# Ultra-Small

# Easy to Use Ultra-High Performance

# **GPS Engine Board**







Version 1.2

NaviSys Technology Corp. http://www.navisys.com.tw/ Tel: +886-3-5632598 Fax: +886-3-5632597 Sales contact: <u>sales@navisys.com.tw</u> Technical support: <a href="mailto:support@navisys.com.tw">support@navisys.com.tw</a> Address: 2F, No.56, Park Ave. II, Science-Based Industrial Park, Hsinchu 300, Taiwan (R.O.C.)



The specifications in this document are subject to change without prior notice. NaviSys Technology Corp. assumes no warranties (either expressed or implied) regarding the accuracy and completeness of this document and shall in no event be liable for any loss of profit or any other commercial damage, including but not limited to special, incidental, consequential, or other damages. NaviSys products are not intended for use in medical, life-support devices, commercial aircraft or any applications involving potential risk of personal injury, death, or severe property damage in case of failure of the product.

No part of this document may be reproduced or transmitted in any form by any means without the express written permission of NaviSys Technology Corp.

"NaviSys Technology – Your Location Partner" is a trademark of NaviSys Technology Corp. All brand names and product names used in this document are trademarks or registered trademarks of their respective holders.

# **Revision History**

| Ver. | Date                         | Description                                   |
|------|------------------------------|-----------------------------------------------|
| 1.0  | May. 2 <sup>nd</sup> , 2008  | Initial release                               |
| 1.1  | Jun. 16 <sup>th</sup> , 2008 | Add block diagram, tape & reel, input message |
| 1.2  | Apr. 27 <sup>th</sup> , 2009 | Add timing diagram, ON_OFF pin                |
|      |                              |                                               |
|      |                              |                                               |
|      |                              |                                               |
|      |                              |                                               |
|      |                              |                                               |
|      |                              |                                               |

### Contents

| 1 | INTRO | DUCTION                                            | 1 |
|---|-------|----------------------------------------------------|---|
|   | 1.1   | Overview                                           | 1 |
|   | 1.2   | BLOCK DIAGRAM                                      | 1 |
|   | 1.3   | MAIN FEATURES                                      | 2 |
|   | 1.4   | RECEIVER SPECIFICATIONS                            | 2 |
|   | 1.5   | Protocols                                          |   |
|   | 1.6   | PROGRAMMING RESOURCES                              |   |
|   | 1.7   | ANTENNA                                            |   |
| 2 | HARD  | WARE INTERFACE                                     | 5 |
|   | 2.1   | PCB DIMENSION                                      | 5 |
|   | 2.2   | PIN ASSIGNMENT                                     | 6 |
|   | 2.3   | LAYOUT SUGGESTION                                  | 7 |
|   | 2.4   | POWER SAVING                                       |   |
|   | 2.4.1 | Power Saving of Adaptive Trickle Power             | 8 |
|   | 2.4.2 | Power Saving of Push To Fix                        | 8 |
|   | 2.4.3 | Power Saving via Pin ON_OFF                        | 9 |
|   | 2.4.4 | Power Saving by Controlling VCC Power Supply       | 9 |
|   | 2.4.5 | Power Saving Measurement                           |   |
|   | 2.5   | ANTENNA APPLICATION                                |   |
|   | 2.5.1 | RF_IN Antenna Connection – Passive Antenna         |   |
|   | 2.5.2 | RF_IN Antenna Connection – Active Antenna          |   |
|   | 2.6   | LED/GPIO1 OUTPUT                                   |   |
|   | 2.7   | 1PPS Output                                        |   |
| 3 | SOFTW | VARE INTERFACE – NMEA OUTPUT                       |   |
|   | 3.1   | NMEA OUTPUT MESSAGES                               |   |
|   | 3.2   | GPGGA - GLOBAL POSITIONING SYSTEM FIX DATA         |   |
|   | 3.3   | GPGLL - GEOGRAPHIC POSITION - LATITUDE / LONGITUDE |   |
|   | 3.4   | GPGSA - GNSS DOP AND ACTIVE SATELLITES             |   |
|   | 3.5   | GPGSV - GNSS SATELLITES IN VIEW                    |   |
|   | 3.6   | GPRMC - RECOMMENDED MINIMUM SPECIFIC GNSS DATA     |   |
|   | 3.7   | GPVTG - COURSE OVER GROUND AND GROUND SPEED        |   |
|   | 3.8   | GPZDA - SIRF TIMING MESSAGE                        |   |
| 4 | SOFTW | VARE INTERFACE – NMEA INPUT                        |   |
|   | 4.1   | TRANSPORT MESSAGE                                  |   |

Navisys NaviSys Technology - Your Location Partner

| 8 | ORDERIN | IG INFORMATION                                                  | . 34 |  |
|---|---------|-----------------------------------------------------------------|------|--|
|   | 7.4     | STORAGE                                                         | . 33 |  |
|   | 7.3     | TAPE & REEL                                                     | . 32 |  |
|   | 7.2     | REFERENCE SOLDERING PROFILE                                     | . 31 |  |
|   | 7.1     | GE-315 REFERENCE CIRCUIT                                        | . 31 |  |
| 7 | REFEREN | NCE DESIGN                                                      | . 31 |  |
|   | 6.2     | POWER BUTTON AND FIRMWARE UPGRADE JUMPER                        |      |  |
|   | 6.1     | EVALUATION BOARD OVERVIEW                                       | . 29 |  |
| 6 | EVALUAT | TION KIT                                                        | . 29 |  |
| 5 | ELECTRI | CAL AND ENVIRONMENTAL DATA                                      | . 26 |  |
|   | 4.9     | 106 — Select Datum                                              | . 25 |  |
|   | 4.8     | 105 - Development Data On / Off                                 | . 25 |  |
|   | 4.7     | 104 — LATITUDE / LONGITUDE / ALTITUDE NAVIGATION INITIALIZATION | . 24 |  |
|   | 4.6     | 103 — Query / Rate Control                                      | . 23 |  |
|   | 4.5     | 102 — Set DGPS Port                                             | . 23 |  |
|   | 4.4     | 101 — NAVIGATION INITIALIZATION                                 | . 22 |  |
|   | 4.3     | 100 — Set Serial Port                                           | . 21 |  |
|   | 4.2     | NMEA INPUT MESSAGES SUMMARY                                     | . 21 |  |

# **1** Introduction

# 1.1 Overview



GE-315 is built-in with LNA, SAW filter, TCXO, regulators. It is an easy to use, ultra-high performance, low power GPS engine board. The built-in SiRFstarIII chip and our experienced design provide fast acquisitions and excellent tracking performance.

As shown in the above pictures, NaviSys GE-315 is a tiny and SMT mountable GPS receiver module. Its small size/low power consumption/high performance enables the adoption of small handheld applications such as personal navigation device, smart phone, feature phone, PDA, MID, GPS watch, personal locator etc. Its SMT design allows automatic pick and place assembly process.



# 1.2 Block Diagram

# 1.3 Main Features

Not only handheld but also any other GPS applications can share the following major features of GE-315.

- Full implementation of ultra-high performance SiRFstarIII single chip architecture
- High tracking sensitivity of **-159dBm**
- Low power consumption of **26mA** at full tracking
- Ultra-small size of 13 (W) x 15 (L) x 2.1 (H) (mm)
- Active and passive antenna support via pin RF\_IN
- **Backup power supply** pin for hot/warm starts and better performance
- Optional SBAS (WAAS, EGNOS) support
- Embedded **ARM7 CPU** is available for external applications
- SMT automatic pick and place assembly support to reduce production cost
- Firmware upgradeable for future potential performance enhancements
- Fully shielded for **EMC protection**
- ♦ Industrial grade operating temperature: -40 ~ 85°C

# **1.4 Receiver Specifications**

| Features                     | Specifications                                                     |  |  |
|------------------------------|--------------------------------------------------------------------|--|--|
| GPS receiver type            | 20 channels, L1 frequency, C/A code                                |  |  |
| Horizontal Position Accuracy | < 2.5m (Autonomous)<br>< 2.0m (WAAS)<br>(50% 24hr static, -130dBm) |  |  |
| Velocity Accuracy            | <0.01 m/s (speed)                                                  |  |  |
|                              | <0.01° (heading)                                                   |  |  |
|                              | (50%@30m/s)                                                        |  |  |
| Time accuracy                | 1µs or less                                                        |  |  |
| TTFF (Time to First Fix)     | Hot Start: 1s                                                      |  |  |
| (50%, -130dBm, autonomous)   | Warm Start: 35s                                                    |  |  |
|                              | Cold Start: 42s                                                    |  |  |
| Sensitivity                  | Tracking: –159dBm                                                  |  |  |
| (Autonomous)                 | Acquisition: -142dBm                                               |  |  |
|                              | (-142dBm 28dB-Hz with 4dB noise figure)                            |  |  |
| Measurement data output      | Update time: 1 second                                              |  |  |
|                              | NMEA output protocol: V.3.00                                       |  |  |
|                              | Baud rate: 4800, 9600, 19200, 38400 bps (8-N-1)                    |  |  |
|                              | Datum: WGS-84                                                      |  |  |
|                              | Default: GGA, GSA, GSV, RMC, VTG                                   |  |  |
|                              | Other options: GLL, ZDA, or SiRF binary                            |  |  |
| Max. Altitude                | <18.000 m                                                          |  |  |

| Max. Velocity         | <1,852 km/hr                              |  |  |
|-----------------------|-------------------------------------------|--|--|
| SBAS Support          | WAAS, EGNOS                               |  |  |
| Dynamics              | <4g                                       |  |  |
| Power consumption     | 26mA, continuous tracking mode            |  |  |
| Power supply          | 3 ~ 6 VDC                                 |  |  |
| Dimension             | single side 13.0(W) x 15.0(L) x 2.1(H) mm |  |  |
| Operating temperature | -40°C ~ +85°C                             |  |  |
| Storage temperature   | -40℃ ~ +125℃                              |  |  |

# 1.5 Protocols

Both NMEA and SiRF binary protocols could be supported via serial UART I/O port – RXA/TXA. The default supported protocol is NMEA protocol.

- 1. Serial communication channel
  - i. No parity, 8-data bit, 1-stop bit (N-8-1)
  - ii. User selectable baud rate among 4800, 9600, 19200, 38400 bps.
- 2. NMEA 0183 Version 3.00 ASCII output
  - i. Default GGA (1 sec), GSA (1 sec), GSV (5 sec), RMC (1 sec), VTG (1 sec)
  - ii. Optional GLL, ZDA

# **1.6 Programming Resources**

The GPS receiver is embedded with an internal ARM7 SOC. Its programming resources are available through the use of SDK from SiRF. Following are its related programming resources:

- 50-MHz ARM7TDMI processor
- 1 Mb SRAM
- 4 Mb flash memory

Please note that the receiver itself will use part of above resources.

### 1.7 Antenna

| Antenna Signal           | Passive or active antenna via pin RF_IN                                                                                                                                     |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Active Antenna<br>Supply | If active antenna is selected, choose an appropriate power source<br>for the active antenna. The power source should be clear. Power<br>noise will degrade its performance. |  |  |

| Pin VCC_RF (2.85V) could also be used to power an active antenna. |
|-------------------------------------------------------------------|
|                                                                   |

# 2 Hardware Interface

# 2.1 PCB Dimension

The dimension of GE-315 is 13 mm (W) x 15 mm (L) x 2.1 mm (H).



# 2.2 Pin Assignment



### 22-pin Interface

| Pin | Name                                                                                                                                                     | Function I/C                                                                      |        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------|
| 1   | RXB                                                                                                                                                      | Port B serial data input (to GPS)                                                 | Input  |
| 2   | ТХВ                                                                                                                                                      | Port B serial data output (from GPS)                                              | Output |
| 3   | 1PPS                                                                                                                                                     | 1 Pulse Per Second signal                                                         | Output |
| 4   | TXA                                                                                                                                                      | Port A serial data output (from GPS)                                              | Output |
| 5   | RXA                                                                                                                                                      | Port A serial data input (to GPS)                                                 | Input  |
| 6   | GPIO10                                                                                                                                                   | General Purpose I/O control pin 10                                                | I/O    |
| 7   | GPIO0                                                                                                                                                    | General Purpose I/O control pin 0                                                 | I/O    |
| 8   | GPIO15                                                                                                                                                   | General Purpose I/O control pin 15                                                | I/O    |
| 9   | RF_PWR                                                                                                                                                   | RF part power status indication for power saving control: "Low": off; "High": on. | Output |
|     |                                                                                                                                                          | Normally, leave it open if it is not used.                                        |        |
| 10  | 10ON_OFFEdge triggered pulse to shut down or wake up<br>GPS. Open drain, recommend 10 k $\Omega$ pull-up.InLimit the voltage on the pull-up to < 2.85 V. |                                                                                   | Input  |
| 11  | V_BAT                                                                                                                                                    | 1.3 ~ 6V backup battery connection Input                                          |        |
| 12  | VCC                                                                                                                                                      | 3 ~ 6V power supply Input                                                         |        |
| 13  | GPIO13                                                                                                                                                   | General Purpose I/O control pin 13                                                | I/O    |
| 14  | GPIO14                                                                                                                                                   | General Purpose I/O control pin 14 I/O                                            |        |

| 15 | LED/<br>GPIO1 | LED display for position fixing or General<br>Purpose I/O control pin 1 | Output or<br>I/O |
|----|---------------|-------------------------------------------------------------------------|------------------|
| 16 | BOOTSEL       | "No Connect" for normal run;<br>"High": for firmware upgrade            | Input            |
| 17 | VCC_RF        | 2.85V antenna power option. Leave it open if this pin is not used.      | Output           |
| 18 | GND           | Ground                                                                  | Input            |
| 19 | RF_IN         | GPS signal from antenna                                                 | Input            |
| 20 | GND           | Ground                                                                  | Input            |
| 21 | GND           | Ground                                                                  | Input            |
| 22 | GND           | Ground                                                                  | Input            |

# 2.3 Layout Suggestion

Following is the pad layout recommendation data (top view):



# 2.4 Power Saving

GE-315 supports various kinds of power saving mechanisms – Trickle Power, Adaptive Trickle Power, and Push To Fix. They are implemented by customized software. In other words, the standard firmware does not activate these features.

In addition, it also supports hardware power saving by sending a pulse to pin 21 (ON\_OFF).

# 2.4.1 Power Saving of Adaptive Trickle Power

The Adaptive Trickle Power (ATP) saving is based on trickle power (TP) saving mechanism. TP is achieved by switching off and on CPU and RF at a fixed time interval. The biggest time interval to report a position is 10 seconds. The on and off ratio is configurable. TP provides a fixed power savings and provides a constant output rate, but may suffer lost fixes in a weak-signal environment. ATP operates similar to TP. However, when signal levels drop, ATP returns to full power so that message output rates remain constant even in difficult environments. This results in variable power savings but much more reliable performance for a fixed output rate. Applications using ATP should give performance very similar to full power, but with significant power savings in strong-signal conditions. This feature is done by firmware automatically if this feature is enabled. The standard firmware does not turn on this feature. It could be customized by request of MOQ.

# 2.4.2 Power Saving of Push To Fix

The Push To Fix (PTF) power saving mechanism generally keeps the receiver in a low-power mode, but wakes up either on demand or periodically (10 seconds to 2 hours, configurable) to refresh position, time, ephemeris data, RTC calibration and output position fixing data.

When the PTF mode is enabled, upon power on or a new PTF cycle, the receiver will stay on full power until the good navigation solution is computed. The low-power mode will follow for the remainder of the period. For example, for a PTF time interval of 30 minutes, if it took 36 seconds to fix position and refresh ephemeris, the receiver will sleep for the remaining 29 minutes and 24 seconds. When a position report is requested, application program can toggle the ON\_OFF pin to wake up the receiver. When the receiver wakes up, a valid position can be computed in the normal hot-start time.

This mechanism is especially useful for applications that need position data only on demand. This feature is done by firmware automatically if this feature is enabled. The

standard firmware does not turn on this feature. It could be customized based on request of MOQ.

### 2.4.3 Power Saving via Pin ON\_OFF

Sending pulses to this pin allows hibernating or wakeup GPS. In hibernating state, CPU and RF are all powered OFF. Only the RTC and core power is ON which consumes less than 20uA.

- If it is in ON state, it hibernates.
- If it is in hibernating state, it will enter normal full power running.

Please do not use this feature together with trickle power. Otherwise, the result is indeterminate.

Since it is a direct link to the Finite State Machine, this pin is limited to 1.5V. A 0 V to 1.5 V CMOS signal is preferred, rising edge triggered, and must stay high for 2 full clock cycles of the RTC clock, or > 70 us. This is not a fail safe pin.

Minimum ON pulse duration is two RTC ticks, about 63  $\mu$ s. Minimum inter-pulse interval is one second. Minimum OFF duration is two RTC ticks, about 63  $\mu$ s. Following figure gives a broad guideline for pulse waveforms that is achievable in most applications.



A critical item is to avoid contact bounce if mechanical switches are used.

# 2.4.4 Power Saving by Controlling VCC Power Supply

Another easy way to save the GPS power is to control the VCC power supply. Many handheld platforms allow controlling power supply by application program. When the power supply to GPS is cut, there is no power consumption.

Please note the power supply to V\_BAT should always be connected. Otherwise, the position fixing data will get lost and thus it will suffer longer position fix time when the power supply is connected again.

### 2.4.5 Power Saving Measurement

Navisys designs and verifies the power saving mechanism carefully to make sure that our customers could enjoy the most advanced technology appropriately. Following figures are the measurements for adaptive trickle power and push to fix.



1. Adaptive trickle power: cycle time 1 second, on time 300ms





3. Adaptive trickle power: cycle time 3 seconds, on time 500ms



# 4. Push To Fix: duty 10 seconds



Summary:



# 2.5 Antenna Application

#### 2.5.1 RF\_IN Antenna Connection – Passive Antenna

Following figure is a simple illustration of connecting a passive antenna. The passive antenna is connected to Pin 19 (RF\_IN).



#### 2.5.2 RF\_IN Antenna Connection – Active Antenna

For active antenna, a DC power supply is required. This power supply could be from pin 17 (VCC\_RF) or other external power sources. The quality of antenna power affects the RF performance significantly. The peak to peak noise level should be less than 50mV. The power level from VCC\_RF is 2.85VDC.

Please see section 7.1 for the reference circuit of active antenna connection.

# 2.6 LED/GPIO1 Output

The LED/GPIO1 pin could be used to drive an LED for indicating position fixing status. The default output is "High" before position is fixed and "High"/"Low" alternating after position is fixed.

LED/GPIO1 output

- High: before position is fixed
- High/low alternating: after position is fixed

In the following connection example, LED would be

- ON: before position is fixed
- Blinking: after position is fixed



The output pattern could be changed by firmware based on MOQ.

# 2.7 1PPS Output

The 1 pulse per second signal output is a precise reference time signal. The rising edge of 1PPS pulse is synchronized to GPS second with precision of better than 1 micro-second, pulse width of 1 micro-second (us).



Please note that 1PPS signal will not output until the position has been fixed. Above is the typical 1PPS signal taken from the screen of oscilloscope. Please note that 1PPS signal will not output until the position has been fixed. Above is the 1PPS signal taken from the screen of oscilloscope.

1PPS output

- Low: before position is fixed
- High/low alternating: after position is fixed

Please note that duty cycle of 1us is not able to light up an LED due to too small duty cycle. To be able to light up an LED, firmware could be customized to output 1PPS pulse with longer duty cycle, say 100ms.

# **3** Software Interface – NMEA Output

### 3.1 NMEA Output Messages

Standard output follows NMEA-0183 standard. In addition to standard output, Navisys also provides customization service for outputting proprietary sentence based on MOQ.

| NMEA Record | Descriptions                                                                  |  |  |  |
|-------------|-------------------------------------------------------------------------------|--|--|--|
| GPGGA       | Global positioning system fixed data: time, position, fixed type              |  |  |  |
| GPGLL       | Geographic position: latitude, longitude, UTC time of position fix and status |  |  |  |
| GPGSA       | GPS receiver operating mode, active satellites, and DOP values                |  |  |  |
| GPGSV       | GNSS satellites in view: ID number, elevation, azimuth, and SNR values        |  |  |  |
| GPRMC       | Recommended minimum specific GNSS data: time, date, position, course, speed   |  |  |  |
| GPVTG       | Course over ground and ground speed                                           |  |  |  |
| GPZDA       | PPS timing message (synchronized to PPS)                                      |  |  |  |

The NMEA-0183 Output Messages are shown as below:

The GE-315 easy to use mountable GPS engine board adopts interface protocol of National Marine Electronics Association's NMEA-0183 Version 3.00 interface specification. GE-315 supports 7 types of NMEA sentences - (GPGGA, GPGLL, GPGSA, GPGSV, GPRMC, GPVTG, and GPZDA).

The default output sentences are GPGGA, GPGSA, GPGSV, GPRMC, and/or GPVTG. The UART communication parameters are 4800 bps, 8 data bits, 1 stop bit, and no parity. Other output sentences, baud rate, and related configurations could be requested based on MOQ.

#### Single message example

\$GPGGA,101229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, , , ,0000\*3E \$GPGLL,2446.8619,N,12100.2579,E,060725.000,A,A\*7E \$GPGSA,A,3,05,02,26,27,09,04,15, , , , , ,1.8,1.0,1.5\*11 \$GPGSV,3,1,12,07,62,081,37,16,61,333,37,01,60,166,37,25,56,053,36\*74 \$GPGSV,3,2,12,03,43,123,33,23,32,316,34,14,17,152,30,20,16,263,33\*78 \$GPGSV,3,3,12,19,17,210,29,06,08,040,,15,06,117,27,21,05,092,27\*7E \$GPRMC,101229.487,A,3723.2475,N,12148.3416,W,0.13,309.62,120598,,,A\*7A \$GPVTG,,T,,M,0.00,N,0.0,K,A\*13 \$GPZDA,060526.000,20,06,2006,,\*51

# 3.2 GPGGA - Global Positioning System Fix Data

Example

\$GPGGA,101229.487,3723.2475,N,12158.3416,W,1,07,1.0,9.0,M, , , ,0000\*3E

Explanation

| Contents               | Example    | Unit   | Explanation                                                    |
|------------------------|------------|--------|----------------------------------------------------------------|
| Message ID             | \$GPGGA    |        | GGA protocol header                                            |
| UTC Time               | 101229.487 |        | hhmmss.sss                                                     |
|                        |            |        | hh: hour, mm: minute, ss: second                               |
| Latitude               | 3723.2475  |        | ddmm.mmmm                                                      |
|                        |            |        | dd: degree, mm.mmmm: minute                                    |
| North/South            | Ν          |        | N: North Latitude, S: South Latitude                           |
| Longitude              | 12158.3416 |        | dddmm.mmmm                                                     |
|                        |            |        | dd: degree, mm.mmmm: minute                                    |
| East/West              | W          |        | E: East Longitude, W: West Longitude                           |
| Position Fix Indicator | 1          |        | 0: Fix not available or invalid,                               |
|                        |            |        | 1: GPS SPS Mode, fix valid,                                    |
|                        |            |        | 2: Differential GPS, SPS Mode, fix valid,                      |
|                        |            |        | 3~5: Not supported,                                            |
|                        |            |        | 6: Dead Reckoning Mode, fix valid                              |
| Satellites Used        | 07         |        | Number of satellites used in positioning calculation (0 to 12) |
| HDOP                   | 1.0        |        | Horizontal Dilution of Precision                               |
| MSL Altitude           | 9.0        | meters |                                                                |
| Unit                   | М          |        | Meters                                                         |
| Geoidal separation     |            | meters |                                                                |
| Units                  | М          |        | Meters                                                         |
| Age of Diff. Corr.     |            | second | Null fields when DGPS is not used                              |
| Diff. Ref. Station ID  | 0000       |        |                                                                |
| checksum               | *3E        |        |                                                                |
| <cr><lf></lf></cr>     |            |        | End of sentence                                                |

# 3.3 GPGLL - Geographic Position - Latitude / Longitude

Example

\$GPGLL,2446.8619,N,12100.2579,E,060725.000,A,A\*7E

| Contents   | Example   | Unit | Explanation         |
|------------|-----------|------|---------------------|
| Message ID | \$GPGLL   |      | GLL protocol header |
| Latitude   | 2446.8619 |      | ddmm.mmmm           |

|                    |            | dd: degree, mm.mmmm: minute          |
|--------------------|------------|--------------------------------------|
| North/South        | Ν          | N: North Latitude, S: South Latitude |
| Longitude          | 12100.2579 | dddmm.mmmm                           |
|                    |            | dd: degree, mm.mmmm: minute          |
| East/West          | E          | E: East Longitude, W: West Longitude |
| UTC Time           | 060725.000 | hhmmss.sss                           |
|                    |            | hh: hour, mm: minute, ss: second     |
| Status             | А          | A: Data valid, V: Data invalid       |
| Mode Indicator     | А          | A: Autonomous, D: DGPS, E: DR        |
| checksum           | *7E        |                                      |
| <cr><lf></lf></cr> |            | End of sentence                      |

# 3.4 GPGSA - GNSS DOP and Active Satellites

Example

\$GPGSA,A,3,05,02,26,27,09,04,15, , , , , ,1.8,1.0,1.5\*11

Explanation

| Contents                   | Example | Explanation                                           |
|----------------------------|---------|-------------------------------------------------------|
| Message ID                 | \$GPGSA | GSA protocol header                                   |
| Mode 1                     | А       | M: Manual—forced to operate in 2D or 3D mode          |
|                            |         | A: 2D Automatic—allowed to automatically switch 2D/3D |
| Mode 2                     | 3       | 1: Fix not available                                  |
|                            |         | 2: 2D (< 4 Satellites used)                           |
|                            |         | 3: 3D (> 3 Satellite s used)                          |
| Satellite used in solution | 05      | Satellite on Channel 1                                |
| Satellite used in solution | 02      | Satellite on Channel 2                                |
|                            |         | Display of quantity used (12 max)                     |
| PDOP                       | 1.8     | Position Dilution of Precision                        |
| HDOP                       | 1.0     | Horizontal Dilution of Precision                      |
| VDOP                       | 1.5     | Vertical Dilution of Precision                        |
| checksum                   | *11     |                                                       |
| <cr><lf></lf></cr>         |         | End of sentence                                       |

# 3.5 GPGSV - GNSS Satellites in View

Example

\$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42\*71 \$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42\*41

| Contents           | Example | Unit | Explanation         |
|--------------------|---------|------|---------------------|
| Message ID         | \$GPGSV |      | GSV protocol header |
| Number of messages | 2       |      | Range 1 to 3        |
| Message number     | 1       |      | Range 1 to 3        |

| Satellites in view  | 07  |         | Number of satellites visible from receiver                                            |
|---------------------|-----|---------|---------------------------------------------------------------------------------------|
| Satellite ID number | 07  |         | Channel 1 (Range 1 to 32)                                                             |
| Elevation           | 79  | degrees | Elevation angle of satellite as seen from receiver channel 1 (00 to 90)               |
| Azimuth             | 048 | degrees | Satellite azimuth as seen from receiver channel 1 (000 to 359)                        |
| SNR (C/No)          | 42  | dBHz    | Received signal level C/No from receiver channel 1 (00 to 99, null when not tracking) |
|                     |     |         |                                                                                       |
| Satellite ID number | 27  |         | Channel 4 (Range 1 to 32)                                                             |
| Elevation           | 27  | degrees | Elevation angle of satellite as seen from receiver channel 4 (00 to 90)               |
| Azimuth             | 138 | degrees | Satellite azimuth as seen from receiver channel 4 (000 to 359)                        |
| SNR (C/No)          | 42  | dBHz    | Received signal level C/No from receiver channel 4 (00 to 99, null when not tracking) |
| checksum            | *71 |         |                                                                                       |
| <cr><lf></lf></cr>  |     |         | End of sentence                                                                       |

# 3.6 GPRMC - Recommended Minimum Specific GNSS Data

Example

\$GPRMC,151229.487,A,3723.2475,N,12148.3416,W,0.13,309.62,120598,,,A\*5F

| Contents            | Example    | Unit    | Explanation                                                               |
|---------------------|------------|---------|---------------------------------------------------------------------------|
| Message ID          | \$GPRMC    |         | RMC protocol header                                                       |
| UTC Time            | 151229.487 |         | hhmmss.sss                                                                |
|                     |            |         | hh: hour, mm: minute, ss: second                                          |
| Status              | А          |         | A: Data valid, V: Data invalid                                            |
| Latitude            | 3723.2475  |         | ddmm.mmmm                                                                 |
|                     |            |         | dd: degree, mm.mmmm: minute                                               |
| North/South         | Ν          |         | N: North Latitude, S: South Latitude                                      |
| Longitude           | 12148.3416 |         | dddmm.mmmm                                                                |
|                     |            |         | dd: degree, mm.mmmm: minute                                               |
| East/West           | W          |         | E: East Longitude, W: West Longitude                                      |
| Speed over ground   | 0.13       | knots   | Receiver's speed                                                          |
| Course over ground  | 309.62     | degrees | Receiver's direction of travel                                            |
|                     |            |         | Moving clockwise starting at due north                                    |
| Date                | 120598     |         | ddmmyy                                                                    |
|                     |            |         | dd: Day, mm: Month, yy: Year                                              |
| Magnetic variation  |            | degrees | This receiver does not support magnetic                                   |
| East/West indicator |            |         | declination. All "course over ground" data are geodetic WGS84 directions. |
| Mode Indicator      | A          |         | A: Autonomous M: Manual                                                   |
|                     |            |         | D: DGPS S: Simulation                                                     |
|                     |            |         | E: Dead Reckoning N: Data Invalid                                         |

| checksum           | *5F |                 |
|--------------------|-----|-----------------|
| <cr><lf></lf></cr> |     | End of sentence |

# 3.7 GPVTG - Course Over Ground and Ground Speed

#### Example

\$GPVTG,309.62,T,,M,0.18,N,0.5,K,A\*0F

#### Explanation

| Contents           | Example | Unit    | Explanation                                                        |
|--------------------|---------|---------|--------------------------------------------------------------------|
| Message ID         | \$GPVTG |         | VTG protocol header                                                |
| Course over ground | 309.62  | degrees | Receiver's direction of travel                                     |
|                    |         |         | Moving clockwise starting at due north (geodetic WGS84 directions) |
| Reference          | Т       |         | True                                                               |
| Course over ground |         | degrees | Receiver's direction of travel                                     |
| Reference          | М       |         | Magnetic                                                           |
| Speed over ground  | 0.18    | knots   | Measured horizontal speed                                          |
| Unit               | Ν       |         | Knots                                                              |
| Speed over ground  | 0.5     | km/hr   | Measured horizontal speed                                          |
| Unit               | K       |         | km/hr                                                              |
| Mode Indicator     | А       |         | A: Autonomous, D: DGPS, E: DR                                      |
| checksum           | *0F     |         |                                                                    |
| <cr><lf></lf></cr> |         |         | End of sentence                                                    |

# 3.8 GPZDA - SiRF Timing Message

Example

\$GPZDA,181813,14,10,2006,00,00\*4A

| Contents           | Example | Unit   | Explanation                                                        |
|--------------------|---------|--------|--------------------------------------------------------------------|
| Message ID         | \$GPZDA |        | ZDA protocol header                                                |
| UTC time           | 181813  |        | Either using valid IONO/UTC or estimated from default leap seconds |
| Day                | 14      |        | Day according to UTC time (01 to 31)                               |
| Month              | 10      |        | Month according to UTC time (01 to 12)                             |
| Year               | 2006    |        | Year according to UTC time (1980 to 2079)                          |
| Local zone hour    | 00      | hour   | Offset from UTC (set to 00)                                        |
| Local zone minutes | 00      | minute | Offset from UTC (set to 00)                                        |
| checksum           | *4F     |        |                                                                    |
| <cr><lf></lf></cr> |         |        | End of sentence                                                    |

# **4** Software Interface – NMEA Input

A NMEA command is actually a NMEA input message. In addition to the NMEA output messages, NMEA input messages allow users to control SiRFstarIII-based product while in NMEA protocol mode. If the receiver is in SiRF binary mode, all NMEA input messages are ignored and it can be switched to NMEA mode by using the SiRFDemo software and selecting Switch to NMEA Protocol from the Action menu. Once the receiver is put into NMEA mode, the following messages could be used to command the SiRFstarIII-based product.

Please note that for normal use, there is no need to input any message to the device.

### 4.1 Transport Message

There are four parts in a NMEA input message:

| Start Sequence                 | Payload           | Checksum            | End Sequence                   |
|--------------------------------|-------------------|---------------------|--------------------------------|
| \$PSRF <mid><sup>1</sup></mid> | Data <sup>2</sup> | *CKSUM <sup>3</sup> | <cr><lf><sup>4</sup></lf></cr> |

- 1. Message Identifier consisting of reserved word "\$PSRF" and three numeric characters. Input messages begin from MID 100.
- 2. Message-specific data. Refer to a specific message section for <data>...<data> definition described in following sections.
- 3. CKSUM is a two-hex character checksum as defined in the NMEA specification, NMEA-0183 Standard for Interfacing Marine Electronic Devices. Checksum consists of a binary exclusive OR the lower 7 bits of each character after the "\$" and before the "\*" symbols. The resulting 7-bit binary number is displayed as the ASCII equivalent of two hexadecimal characters representing the contents of the checksum. Use of checksums is required on all input messages.
- 4. Each message is terminated using Carriage Return (CR) and Line Feed (LF) which is \r\n or hexadecimal 0D 0A. Because \r and \n are not printable ASCII characters, they are omitted from the example strings, but must be sent to terminate the message and cause the receiver to process that input message.
- Please note that all fields in all proprietary NMEA messages are required, none are optional. All NMEA, messages are comma delimited.

# 4.2 NMEA Input Messages Summary

| Message                     | MID | Description                                                                             |
|-----------------------------|-----|-----------------------------------------------------------------------------------------|
| SetSerialPort               | 100 | Set PORT A parameters and protocol                                                      |
| NavigationInitialization    | 101 | Parameters required for start using X/Y/Z.<br>Input coordinates must be WGS84.          |
| SetDGPSPort                 | 102 | Set PORT B parameters for DGPS input (Not applicable)                                   |
| Query/Rate Control          | 103 | Query standard NMEA message and/or set output rate                                      |
| LLANavigationInitialization | 104 | Parameters required for start using<br>Lat/Lon/Alt. Input coordinates must be<br>WGS84. |
| Development Data On/Off     | 105 | Development Data messages On/Off                                                        |
| Select Datum                | 106 | Selection of datum to be used for coordinate transformations.                           |

Please note that following input messages are SiRF proprietary NMEA messages.

# 4.3 100 — Set Serial Port

This command message is used to set the protocol (SiRF binary or NMEA) and/or the communication parameters (Baud, data bits, stop bits, and parity). Generally, this command is used to switch the module back to SiRF binary protocol mode where a more extensive command message set is available. Sometimes, it is used to set a new baud rate. When a valid message is received, the parameters are stored in battery-backed SRAM for future use.

- Example Switch to SiRF binary protocol at 38400,8,N,1
  \$PSRF100,0,38400,8,1,0\*3C
- Explanation

| Name                | Example   | Units | Description                |
|---------------------|-----------|-------|----------------------------|
| Message ID          | \$PSRF100 |       | PSRF100 protocol header    |
| Protocol            | 0         |       | 0=SiRF binary, 1=NMEA      |
| Baud                | 38400     |       | 4800, 9600, 19200, 38400   |
| DataBits            | 8         |       | 7, 8                       |
| StopBits            | 1         |       | 0,1                        |
| Parity              | 0         |       | 0=None, 1=Odd, 2=Even      |
| Checksum            | *3C       |       |                            |
| <cr> <lf></lf></cr> |           |       | End of message termination |

# 4.4 101 — Navigation Initialization

This command is used to initialize the GPS device by providing current position (in X, Y, Z coordinates), clock offset, and time. This enables the GPS device to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable GPS device to acquire signals quickly. This message is also used for TTFF (Time To First Fix) tests.

Example - Start using known position and time.
 \$PSRF101,-2686700,-4304200,3851624,96000,497260,921,12,3\*2F

| Name                | Example   | Units   | Description                                                                                                                                  |
|---------------------|-----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Message ID          | \$PSRF101 |         | PSRF101 protocol header                                                                                                                      |
| ECEF X              | -2686700  | meters  | X coordinate position                                                                                                                        |
| ECEF Y              | -4304200  | meters  | Y coordinate position                                                                                                                        |
| ECEF Z              | 3851624   | meters  | Z coordinate position                                                                                                                        |
| ClkOffset           | 96000     | Hz      | Clock offset of the evaluation receiver. Use 0 for last saved value if available. If this is unavailable, a default value of 96,000 is used. |
| TimeOfWeek          | 497260    | seconds | GPS Time Of Week                                                                                                                             |
| WeekNo              | 921       |         | GPS Week Number                                                                                                                              |
| ChannelCount        | 12        |         | Range 1 to 12                                                                                                                                |
| ResetCfg            | 3         |         | See following table                                                                                                                          |
| Checksum            | *2F       |         |                                                                                                                                              |
| <cr> <lf></lf></cr> |           |         | End of message termination                                                                                                                   |

Explanation

**Reset Configuration** 

| Hex  | Description                                                                                                                                             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x00 | Perform a hot start using internal RAM data. No initialization data is used.                                                                            |
| 0x01 | Use initialization data and begin in start mode. Uncertainties are 5 seconds time accuracy and 300km position accuracy. Ephemeris data in SRAM is used. |
| 0x02 | No initialization data is used, ephemeris data is cleared, and warm start performed using remaining data in RAM.                                        |
| 0x03 | Initialization data is used, ephemeris data is cleared, and warm start performed using remaining data in RAM.                                           |
| 0x04 | No initialization data is used. Position, time and ephemeris are cleared and a cold start is performed.                                                 |
| 0x08 | No initialization data is used. Internal RAM is cleared and a factory reset is performed.                                                               |

# 4.5 102 — Set DGPS Port

This command is used to control the serial port used to receive RTCM differential corrections. Differential receivers may output corrections using different communication parameters. If a DGPS receiver is used that has different communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message is received, the parameters are stored in battery-backed SRAM and the receiver restarts using the saved parameters.

Example - Set DGPS Port to be 9600,8,N,1.
 \$PSRF102,9600,8,1,0\*12

| Name                | Example   | Units | Description                |
|---------------------|-----------|-------|----------------------------|
| Message ID          | \$PSRF102 |       | PSRF102 protocol header    |
| Baud                | 9600      |       | 4800, 9600, 19200, 38400   |
| DataBits            | 8         |       | 8,7                        |
| StopBits            | 1         |       | 0,1                        |
| Parity              | 0         |       | 0=None, 1=Odd, 2=Even      |
| Checksum            | *12       |       |                            |
| <cr> <lf></lf></cr> |           |       | End of message termination |

Explanation

# 4.6 103 — Query / Rate Control

This command is used to control the output of standard NMEA messages GGA, GLL, GSA, GSV, RMC, and VTG. Using this command message, standard NMEA messages may be polled once, or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery-backed memory for each entry when the message is accepted.

- Example 1 Query the GSV message with checksum enabled.
  \$PSRF103,03,01,00,01\*26
- Example 2 Enable VTG message for a 1Hz constant output with checksum enabled \$PSRF103,05,00,01,01\*20
- Example 3 Disable VTG message
  \$PSRF103,05,00,00,01\*21
- Explanation

| Name       | Example   | Units | Description                                                                           |
|------------|-----------|-------|---------------------------------------------------------------------------------------|
| Message ID | \$PSRF103 |       | PSRF103 protocol header                                                               |
| Msg        | 03        |       | 0: GGA, 1: GLL, 2: GSA, 3:GSV, 4:RMC, 5: VTG, 6:MSS, 7:reserved, 8: ZDA, 9: reserved. |
| Mode       | 01        |       | 0=SetRate, 1=Query                                                                    |

| Rate                | 00  | Seconds | Output-off = 0, max=255               |
|---------------------|-----|---------|---------------------------------------|
| CksumEnable         | 01  |         | 0=Disable checksum, 1=Enable checksum |
| Checksum            | *26 |         |                                       |
| <cr> <lf></lf></cr> |     |         | End of message termination            |

# 4.7 104 — Latitude / Longitude / Altitude Navigation Initialization

This command is used to initialize GPS DEVICE by providing current position (in latitude, longitude, and altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the receiver to acquire signals quickly.

Example - Start using known position and time.

\$PSRF104,37.3875111,-121.97232,0,96000,237759,1946,12,1\*07

| Name                | Example    | Units   | Description                                                                                                                                  |
|---------------------|------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Message ID          | \$PSRF104  |         | PSRF104 protocol header                                                                                                                      |
| Lat                 | 37.3875111 | degrees | Latitude position (Range 90 to -90)                                                                                                          |
| Lon                 | -121.97232 | degrees | Longitude position (Range 180 to -180)                                                                                                       |
| Alt                 | 0          | meters  | Altitude position                                                                                                                            |
| ClkOffset           | 96000      | Hz      | Clock offset of the evaluation receiver. Use 0 for last saved value if available. If this is unavailable, a default value of 96,000 is used. |
| TimeOfWeek          | 237759     | seconds | GPS Time Of Week                                                                                                                             |
| WeekNo              | 1946       |         | Extended GPS Week Number (1024 added)                                                                                                        |
| ChannelCount        | 12         |         | Range 1 to 12                                                                                                                                |
| ResetCfg            | 1          |         | See following table                                                                                                                          |
| Checksum            | *07        |         |                                                                                                                                              |
| <cr> <lf></lf></cr> |            |         | End of message termination                                                                                                                   |

#### Explanation

#### **Reset Configuration**

| Hex  | Description                                                                            |
|------|----------------------------------------------------------------------------------------|
| 0x01 | Hot Start – All data valid.                                                            |
| 0x02 | Warm Start – Ephemeris cleared                                                         |
| 0x03 | Warm Start (with Init) – Ephemeris cleared, initialization data loaded                 |
| 0x04 | Cold Start – Clears all data in memory                                                 |
| 0x08 | Clear Memory – Clears all data in memory and resets receiver back to factory defaults. |

# 4.8 105 — Development Data On / Off

Use this command to enable development data information if you are having trouble getting commands accepted. Invalid commands generate debug information that enables you to determine the source of the command rejection. Common reasons for input command rejection are invalid checksum or parameter out of specified range. Please note that this command is useful only when you develop your own application with SiRF SDK.

- Example 1 Debug On\$PSRF105,1\*3E
- Example 2 Debug Off
  \$PSRF105,0\*3F
- Explanation

| Name                | Example   | Units | Description                |
|---------------------|-----------|-------|----------------------------|
| Message ID          | \$PSRF105 |       | PSRF105 protocol header    |
| Debug               | 1         |       | 0=Off, 1=On                |
| Checksum            | *3E       |       |                            |
| <cr> <lf></lf></cr> |           |       | End of message termination |

# 4.9 106 — Select Datum

GPS receivers perform initial position and velocity calculations using an earth-centered earth-fixed (ECEF) coordinate system. Results may be converted to an earth model (geoid) defined by the selected datum. The default datum is WGS 84 (World Geodetic System 1984) which provides a worldwide common grid system that may be translated into local coordinate systems or map datums. (Local map datums are a best fit to the local shape of the earth and not valid worldwide.)

- Example Select datum TOKYO\_KOREA
  \$PSRF106,180\*35
- Explanation

| Name                | Example   | Units | Description                |
|---------------------|-----------|-------|----------------------------|
| Message ID          | \$PSRF106 |       | PSRF106 protocol header    |
| Datum               | 180       |       | 21=WGS84                   |
|                     |           |       | 178=TOKYO_MEAN             |
|                     |           |       | 179=TOKYO_JAPAN            |
|                     |           |       | 180=TOKYO_KOREA            |
|                     |           |       | 181=TOKYO_OKINAWA          |
| Checksum            | *35       |       |                            |
| <cr> <lf></lf></cr> |           |       | End of message termination |

# 5 Electrical and Environmental Data

#### **Absolute Maximum Ratings**

| Power Supply (pin 12)          | 6.5 VDC |
|--------------------------------|---------|
| Backup Battery Supply (pin 11) | 7 VDC   |

**Warning** – Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "DC Recommended Operating Condition" is not recommended and extended exposure beyond the "DC Recommended Operating Condition" may affect device reliability.

#### **DC Recommended Operation Condition**

| Power Supply (pin 12)          | 3 ~ 6 VDC   |
|--------------------------------|-------------|
| Backup Battery Supply (pin 11) | 1.3 ~ 6 VDC |

#### Digital I/O Data

| V <sub>IH</sub> : 2 ~ 3.15V | V <sub>IL</sub> : 0 ~ 0.85V |
|-----------------------------|-----------------------------|
| High level input voltage    | Low level input voltage     |
| V <sub>OH</sub> : > 2.1V    | V <sub>OL</sub> : < 0.72V   |
| High level output voltage   | Low level output voltage    |

#### ON\_OFF pin

| V <sub>IH</sub> : 1.05 ~ 1.95V <sup>+</sup> | V <sub>IL</sub> : 0 ~ 0.45V |
|---------------------------------------------|-----------------------------|
| High level input voltage                    | Low level input voltage     |
| V <sub>OH</sub> : > 1.3V                    | V <sub>OL</sub> : < 0. 2V   |
| High level output voltage                   | Low level output voltage    |

<sup>+</sup>Note. This pin is 3.3V tolerant.

# **AC Characteristics / Signal Timing**

Following pictures are captured with the Oscilloscope DSO6052A from Agilent Technology.

#### 1PPS

| 1.00V/      | 1                      | ← 0.6s 500.0g              | / Stop 🚽 🚺 4000     | 0 1.00V/ 0                              | 🗲 1.098% 10.00%/ Stop f 🚺 3000          |
|-------------|------------------------|----------------------------|---------------------|-----------------------------------------|-----------------------------------------|
|             |                        |                            |                     |                                         |                                         |
|             |                        |                            |                     |                                         |                                         |
|             |                        |                            |                     |                                         |                                         |
|             |                        |                            |                     |                                         |                                         |
|             |                        |                            |                     |                                         |                                         |
|             |                        |                            |                     |                                         |                                         |
|             |                        |                            |                     |                                         |                                         |
|             |                        |                            |                     |                                         |                                         |
|             |                        |                            |                     |                                         |                                         |
|             |                        |                            |                     |                                         |                                         |
|             |                        |                            |                     |                                         | N I I I I I I I I I I I I I I I I I I I |
|             |                        |                            |                     |                                         |                                         |
| τ.          |                        |                            |                     | <b>%</b>                                |                                         |
| 2.0         |                        |                            |                     | 12                                      |                                         |
|             |                        |                            |                     |                                         |                                         |
| Pk-Pkill: 3 | .00V +Width(1) (; 1.0  | 96us                       | 2 Course Provers    | Rise(1):No edges Fall(1): 3.9ns         | Pk-Pk(1): 2.95V                         |
| Source      | e eiect: M<br>+Width + | easure Clear<br>Width Meas | Settings Thresholds | © Persist Clear ➡ Grid<br>■ Display 33% | Vectors                                 |

Note of jitter - Above right picture is a stored result by setting rising edge trigger for 1 hour.



Above picture is a snapshot of UART port A's TX signal at baud 9600bps, N-8-1.



Above two pictures are for rising and falling edges of UART port A's TX signal respectively.

### LED/GPIO1



Above picture is a snapshot of LED/GPIO1 signal when the position is fixed.

#### **Environmental Data**

| Operating temperature | -40 ~ 85℃                                        |
|-----------------------|--------------------------------------------------|
| Storage temperature   | -40 ~ 125℃ without tape & reel                   |
|                       | $0 \sim 70^{\circ}$ with tape & reel (long-term) |
|                       | -20 ~ 70°C with tape & reel (within 2 days)      |

- GE-315 is backed at 125°C for 4 hours before they are vacuum taped. It's unnecessary to bake GE-315 again if the assembly is from the tape directly.
- If GE-315 has been removed from the tape and stored in damp environment, suggest baking it again at 125 ℃ for 4 hours before assembly.

#### **Evaluation Kit** 6

The evaluation kit includes

- GE-315 engine board x 1
- GE-315 evaluation board x 1
- Mini-USB to USB type A data cable x 1
- SMA active antenna (optional) x 1

#### Evaluation Board Overview 6.1

The GE-315 evaluation board supports RF connector for external active antenna module connection. It is unnecessary to tune the RF trace in this application. Just plug-in and it's ready to use.



Lithium backup battery

Please note that the RF connector could be SMA or I-PEX.

# 6.2 Power Button and Firmware Upgrade Jumper

On the evaluation board, the power button is used to control the power into the GE-315 and the boot select jumper is used to control if a firmware upgrade is needed or not.

Power control push-button x 1 -• Power is off as it's at high position.

Power is on as it's at low position.



- Boot jumper x 1 normal run or firmware upgrade selection
  - Normal run (as shown below)

Data Sheet - GE-315



Firmware upgrade (as shown below)



# 7 Reference Design

Following reference circuit is an application example used in the GE-315 evaluation board.

# 7.1 GE-315 Reference Circuit

Following example shows how to connect an active antenna (CON4 is the RF connector to the active antenna module), how to connect a backup battery (BT1), how to show the position fixing status via LED (LD1) etc.



# 7.2 Reference Soldering Profile

The following soldering profile is for the reference purpose only. The best profile depends on the reflow equipment.





# 7.3 Tape & Reel

Quantity: 1000 pcs per reel.



| ITEM | W                              | Ao                             | Bo                             | Ko                            | Р                              | F                              | Е                              | Do                            | Po                 | P2                            | t         |
|------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|-------------------------------|--------------------|-------------------------------|-----------|
| DIM  | 24.0 <sup>+0.30</sup><br>-0.30 | 13.4 <sup>+0.10</sup><br>-0.10 | 15.4 <sup>+0.10</sup><br>-0.10 | 2.4 <sup>+0.10</sup><br>-0.10 | 16.0 <sup>+0.10</sup><br>-0.10 | 11.5 <sup>+0.10</sup><br>-0.10 | 1.75 <sup>+0.10</sup><br>-0.10 | 1.5 <sup>+0.10</sup><br>-0.00 | 4.0 +0.10<br>-0.10 | 2.0 <sup>+0.10</sup><br>-0.10 | 0.3 +0.05 |

SECTION B-B

NOTE:

- 1. 10 sprocket hole pitch cumulative tolerance  $\pm 0.2$
- 2. Camber not to exceed 1mm in 100mm.
- 3. Material: Conductive Polystyrene.
- 4. Ao and Bo measured on a plane 0.3mm above the bottom of the pocket.
- 5. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 6. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole.

### 7.4 Storage

All the modules are baked at  $125^{\circ}$ C for 4 hours before vacuum tape & reeled.

- Please assembly the module within 48 hours after taking out from the tape or  $\bullet$ store the module inside moisture-proof box.
- If not, please bake the module at  $125^{\circ}$ C for 4 hours before assembly.

# 8 Ordering Information

Each product has a default configuration. Customer is strongly suggested to check the product configuration before ordering.

### GE-315X

A GGA, GSA, RMC, VTG@1Hz, GSV@1/5Hz, 9600bps