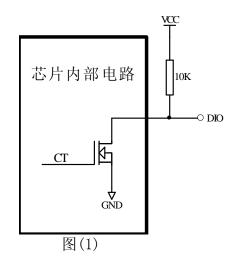
概述

TM1630 是一种带键盘扫描接口的LED(发光二极管显示器)驱动控制专用电路,内 部集成有MCU 数字接口、数据锁存器、LED 高压驱动、键盘扫描等电路。本产品性能优 良,质量可靠。主要应用于VCR、VCD、DVD 及家庭影院等产品的显示屏驱动。采用DIP18 的封装形式。

二、 特性说明

- 采用功率CMOS 工艺
- 多种显示模式 (7 段×5 位 ~ 8段×4 位)
- 键扫描 (7×1bit)
- 辉度调节电路(占空比8 级可调)
- 串行接口 (CLK, STB, DIO)
- 振荡方式: 内置RC 振荡 (450KHz+5%)
- 内置上电复位电路
- 封装形式: DIP18


三、 管脚定义:

1 DIO GRID1 — CLK GRID2 — STB GND — GRID3 — GRID4 — GRID4 — GRID4 — GRID4 — GRID4 — GRID5 — SEG2/KS2 SEG14/GRID5 — SEG3/KS3 SEG8/KS8 — SEG4/KS4 SEG7/KS7 — SEG5/KS5 SEG6/KS6 — S	18 17 16 15 14 13 12 11
--	--

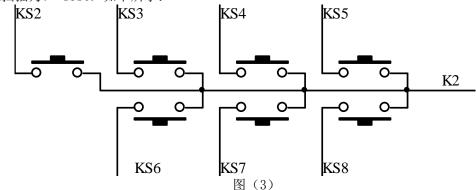
四、管脚功能定义:

符号	管脚名称	说明
DIO	数据输入/输出	在时钟上升沿输入/输出串行数据,从低位开始;
STB	片选	在上升或下降沿初始化串行接口,随后等待接收指令。STB 为低后的第一个字节作为指令,当处理指令时,当前其它处理被终止。当STB 为高时,CLK 被忽略
CLK	时钟输入	在时钟上升沿输入/输出串行数据
K2	键扫数据输入	输入该脚的数据在显示周期结束后被 锁存
SEG2/KS2~ SEG8/KS8	输出(段)	段输出(也用作键扫描),p管开漏输出
GRID1∼ GRID4	输出(位)	位输出,N管开漏输出
SEG14/GRID5	输出(段/位)	段/位复用输出
VDD	逻辑电源	5V ± 10%
GND	逻辑地	接系统地

▲ 注意: DIO口输出数据时为N管开漏输出,在读键的时候需要外接1K-10K的上拉电阻。本公司推 荐10K的上拉电阻。DIO在时钟的下降沿控制N管的动作,此时读数时不稳定,可以参考图(6), 在时钟的上升沿读数才时稳定。

显示寄存器地址和显示模式: 五、

该寄存器存储通过串行接口从外部器件传送到TM1630的数据,地址从00H-09H共10字节单元, 分别与芯片SGE和GRID管脚所接的LED灯对应,分配如下图:


写LED显示数据的时候,按照从显示地址从低位到高位,从数据字节的低位到高位操作。

Х	Х	SEG14	X	X	X	X	Х	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
	5四位	HU(青	xxl	xxHL(低四位)			xxHU(高四位)		Х)	氐四位	HL(作	XX		
В7	В6	В5	B4	В3	B2	B1	В0	В7	В6	В5	B4	В3	B2	B1	В0
GRID	ΗU	01			00HU 01HL					HL	00				
GRID	ΗU	03			HL	03		02 HU					HL	02	
GRID	05HU				05HL				HU	04			HL	04	
GRID4	HU	07 HU				07HL			06HU				HL	06	
GRID	HU	09			HL	09			HU	08			HL	08	

图 (2)

键扫描和键扫数据寄存器:

键扫描为7×1bit,如下所示:

键扫数据储存地址如下所示,先发读键命令后,开始读取按键数据BYTE1—BYTE4字节,读数据 从低位开始输出,其中B0,B2,B3,B5,B6,B7位为无效位,此时芯片输出为0。芯片K和KS引脚对应的 按键按下时,相对应的字节内的 BIT位为1。

В0	B1	B2	В3	B4	В5	В6	В7	
	K2			K2				
0	0	0	0	KS2	0	0	0	BYTE1
0	KS3	0	0	KS4	0	0	0	BYTE2
0	KS5	0	0	KS6	0	0	0	BYTE3
0	KS7	0	0	KS8	0	0	0	BYTE4

图 (4)

▲注意: 1、TM1630最多可以读4个字节,不允许多读。

2、读数据字节只能按顺序从BYTE1-BYTE4读取,不可跨字节读。例如:硬件上的K2与KS8 对应按键按下时,此时想要读到此按键数据,必须需要读到第4个字节的第4BIT位,才可读出数据。

七、 指令说明:

指令用来设置显示模式和LED 驱动器的状态。

在STB下降沿后由DIO输入的第一个字节作为一条指令。经过译码,取最高B7、B6两位比特位以 区别不同的指令。

В7	В6	指令
0	0	显示模式设置
0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时STB被置为高电平,串行通讯被初始化,并且正在传送的指令或数据 无效(之前传送的指令或数据保持有效)。

(1) 显示模式设置:

MSB							LSB	
В7	В6	В5	B4	В3	B2	B1	В0	显示模式
0	0		无关项	,填0		0	0	4位8段
0	0			, 英 0		0	1	5位7段

该指令用来设置选择段和位的个数(4~5位,7~8段)。当指令执行时,显示被强制关闭。 要送显示控制命令开显示,原先显示的数据内容不会被改变,但当相同模式被设置时,则上述情况 并不发生。

(2) 数据设置:

MCD

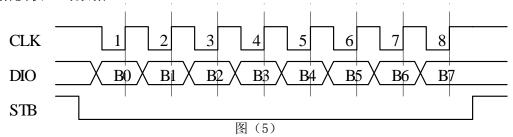
	M2R							T2R			
	В7	В6	В5	B4	В3	B2	B1	В0	功能	说明	
I	0	1						0	0	数据读写模式	写数据到显示寄存器
	0	1					1	0	设置	读键扫数据	
	0	1	无关			0			地址增加模式	自动地址增加	
	0	1	填 0			1			设置	固定地址	
	0	1			0				测试模式设置	普通模式	
	0	1			1				(内部使用)	测试模式	

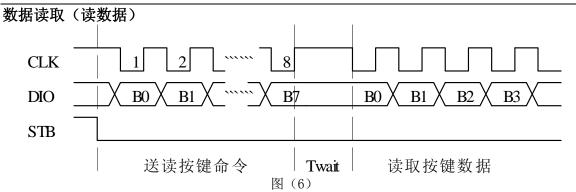
LCD

(3) 地址命令设设置:

MSB							LSB	
В7	В6	В5	B4	В3	B2	B1	В0	显示地址
1	1			0	0	0	0	00Н
1	1			0	0	0	1	01H
1	1			0	0	1	0	02Н
1	1			0	0	1	1	03H
1	1	无关		0	1	0	0	04H
1	1	填	0	0	1	0	1	05H
1	1			0	1	1	0	06Н
1	1			0	1	1	1	07H
1	1			1	0	0	0	08H
1	1			1	0	0	1	09Н

该指令用来设置显示寄存器的地址。如果地址设为OAH 或更高,数据被忽略,直到有效地 址被设定。上电时,地址默认设为00H。


(4) 显示控制:


MSB							LSB		
В7	В6	В5	B4	ВЗ	B2	B1	ВО	功能	说明
1	0				0	0	0		设置脉冲宽度为 1/16
1	0				0	0	1		设置脉冲宽度为 2/16
1	0			0 1 0			设置脉冲宽度为 4/16		
1	0				0	1	1	消光数量设置	设置脉冲宽度为 10/16
1	0		无关项,		们儿奴里以且	设置脉冲宽度为 11/16			
1	0	填	0		1	0	1		设置脉冲宽度为 12/16
1	0				1	1 0			设置脉冲宽度为 13/16
1	0				1	1	1		设置脉冲宽度为 14/16
1	0			0				显示开关设置	显示关
1	0			1				业小月大以且	显示开

八、串行数据传输格式:

读取和接收1个BIT都在时钟的上升沿操作。

数据接收(写数据)

▲注意: 读取数据时,从串行时钟CLK 的第8 个上升沿开始设置指令到CLK 下降沿读数据之间需要 一个等待时间Twait(最小1µS)。

九、 显示和键扫:

(1) 显示:

驱动共阴数码管:

如下图所示:

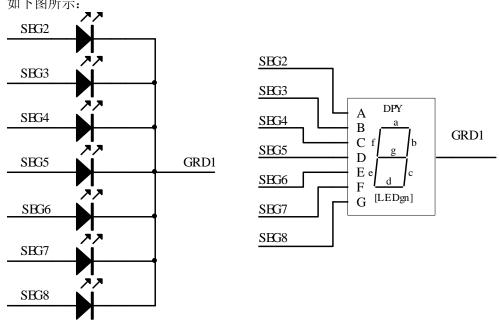
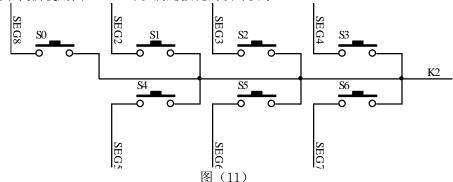


图 (7)

图7给出共阴数码管的连接示意图,如果让该数码管显示"0",那你需要在GRID1为低电平 的时候让SEG2, SEG3, SEG4, SEG5, SEG6, SEG7为高电平, SEG8为低电平, 由图 (9) 我们可以看出 当GRID1为低电平的时候,GRID2-GRID5是为高电平的,

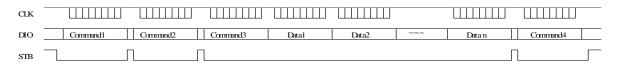

结合图(1), 你不难看出只需要在00H地址单元里面写数据3FH就可以了。

SEG14	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	
0	0	1	1	1	1	1	1	Н00
В7	В6	B5	B4	В3	B2	B1	В0	

V1.0

(2) 键盘扫描:

一般情况下我们使用图(11)可以满足按键的设计要求:

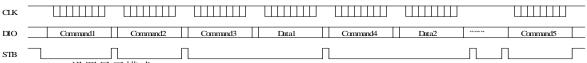


当S1被按下的时候,在第1个字节的B0读到"1"。如果多个按键被按下,将会读到多个"1", 当S2, S3被按下的时候,可以在第1个字节的B1, B3读到"1"。

十、 应用时串行数据的传输:

(1) 地址增加模式

使用地址自动加1模式,设置地址实际上是设置传送的数据流存放的起始地址。起始地址命令 字发送完毕,"STB"不需要置高紧跟着传数据,最多14BYTE,数据传送完毕才将"STB"置高。


Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址

Data1~ n: 传输显示数据至Command3地址和后面的地址内(最多14 bytes)

Command4: 显示控制命令

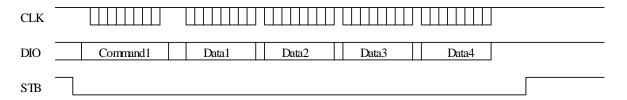
(2) 固定地址模式

使用固定地址模式,设置地址其实际上是设置需要传送的1BYTE数据存放的地址。地址发送完 毕, "STB"不需要置高,紧跟着传1BYTE数据,数据传送完毕才将"STB"置高。然后重新设置第2 个数据需要存放的地址,最多14BYTE数据传送完毕, "STB"置高。

Command1: 设置显示模式 Command2: 设置数据命令 Command3: 设置显示地址1

Data1: 传输显示数据1至Command3地址内

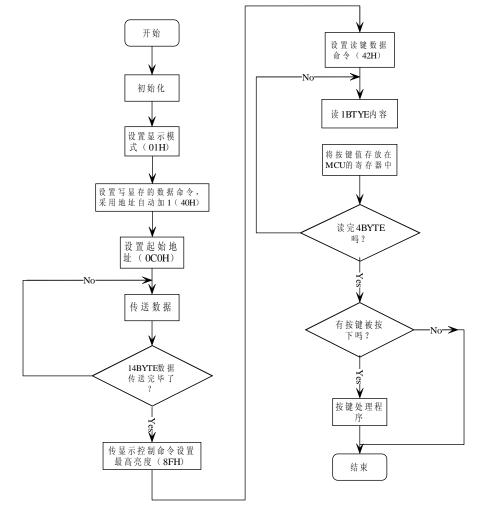
LED 驱动控制专用电路


TM1630

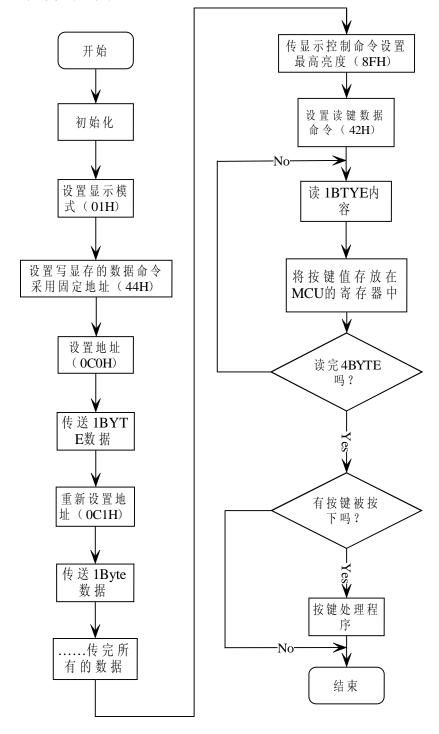
Command4: 设置显示地址2

Data2: 传输显示数据2至Command4地址内

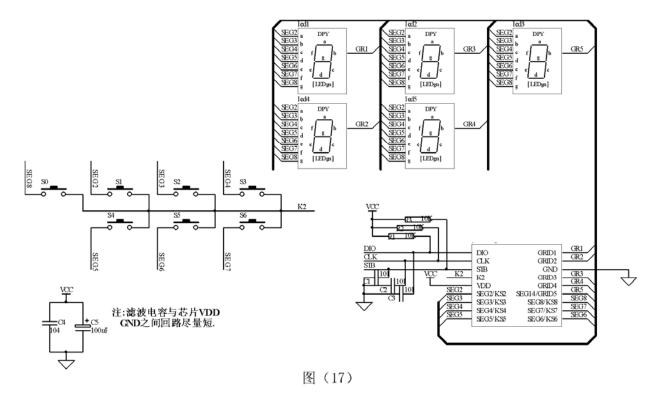
Command5: 显示控制命令


(3) 读按键时序

Command1: 设置读按键命令 Data1~4: 读取按键数据


(4) 程序设计流程图

采用地址自动加1的程序设计流程图:


采用固定地址的程序设计流程图:

www.titanmec.com

十一. 应用电路:

TM1630驱动共阴数码屏接线电路图(17):

- ▲注意: 1、VDD、GND之间滤波电容在PCB板布线应尽量靠近TM1630芯片放置,加强滤波效果。
 - 2、连接在DIO、CLK、STB通讯口上三个100P电容可以降低对通讯口的干扰。
 - 3、因蓝光数码管的导通压降压约为3V,因此TM1630供电应选用5V。

十二、 电气参数:

极限参数 (Ta = 25℃, Vss = 0 V)

参数	符号	范围	单位
逻辑电源电压	VDD	-0.5 ∼+7.0	V
逻辑输入电压	VI1	$-0.5 \sim \text{VDD} + 0.5$	V
LED Seg 驱动输出电流	I01	-50	mA
LED Grid 驱动输出电流	102	+200	mA
功率损耗	PD	400	mW
工作温度	Topt	-40 ∼ +80	$^{\circ}$
储存温度	Tstg	−65 ~+150	$^{\circ}$

正常工作范围 (Ta = -20 ~ +70℃, Vss = 0 V)

参数	符号	最小	典型	最大	单位	测试条 件
逻辑电源电压	VDD		5		V	ı
高电平输入电压	VIH	0.7 VDD	-	VDD	V	-
低电平输入电压	VIL	0	_	0.3 VDD	V	1

电气特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V, Vss = 0 V

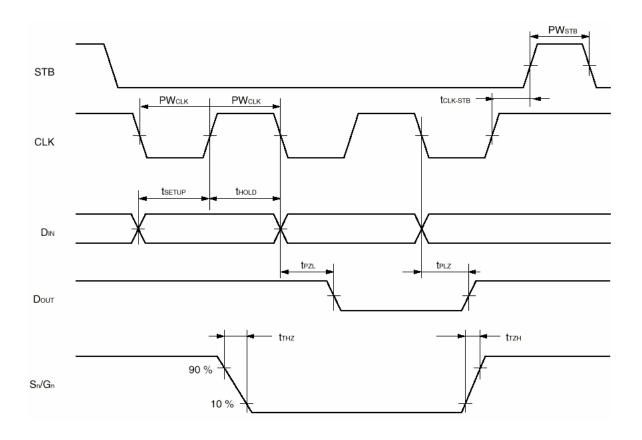
参数	符号	最小	典型	最大	单位	测试条件
SEG引脚高电平输出	Ioh1	20	25	40	mA	Vo = vdd-2V
电流	Ioh2	20	30	50	mA	Vo = vdd-3V
GRID引脚低电平输 入电流	IOL1	-80	-140	-	mA	Vo=0. 3V
低电平输出电流	Idout	4	_	_	mA	V0 = 0.4V, dout

高电平输出电流容 许量	Itolsg	-	-	5	%	VO = VDD - 3V, Seg1∼Seg11
输出下拉电阻	RL		10		КΩ	K1~K3
输入电流	II	-	-	±1	μА	VI = VDD / VSS
高电平输入电压	VIH	0. 7 VDD	_		V	CLK, DIN, STB
低电平输入电压	VIL	_	_	0. 3 VDD	V	CLK, DIN, STB
滞后电压	VH	_	0.35	-	V	CLK, DIN, STB
动态电流损耗	IDDdyn	_	_	5	mA	无负载,显示关

开关特性 (Ta = -20 ~ +70℃, VDD = 4.5 ~ 5.5 V)

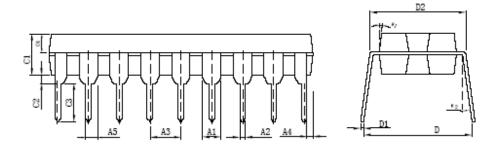
<u> </u>	八八						
参数	符号	最小	典型	最大	单位	, i	则试条件
振荡频率	fosc	1	500	I	KHz	R =	= 16.5 ΚΩ
	tPLZ	-	-	300	ns	CL	K → DOUT
传输延迟时间	tPZL	-	-	100	ns	CL = 15 ₁	pF, $RL = 10K \Omega$
	TTZH 1	-	-	2	μѕ	CL =	Seg1~Seg11
上升时间	TTZH 2	_	-	0. 5	μς	300p F	Grid1~Grid4 Seg12/Grid7~ Seg14/Grid5
下降时间	TTHZ	-	-	120	μѕ	CL = :	300pF, Segn, Gridn
最大时钟频率	Fmax	1	-	-	MHz	F	占空比50%
输入电容	CI	_	-	15	pF		_

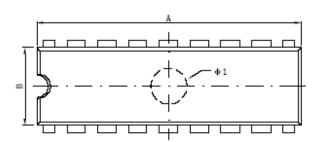
时序特性 (Ta = -20 \sim +70℃, VDD = 4.5 \sim 5.5 V)


参数	符号	最小	典型	最大	单位	测试条件
时钟脉冲宽度	PWCLK	400	_	-	ns	_

TM1630_

选通脉冲宽度	PWSTB	1	=	=	μs	-
数据建立时间	tSETUP	100	-	-	ns	-
数据保持时间	tHOLD	100	-	-	ns	-
CLK →STB 时间	tCLK STB	1	-	-	μѕ	CLK↑→STB↑
等待时间	tWAIT	1	_	-	μs	CLK ↑ → CLK ↓


时序波形图:



十三、 IC 封装示意图:

尺寸 标注	最小(==)	最大(==)	尺寸 标注	最小(mm)	最大(100)
A	21.90	22.10	C3	3.4	3.6
A1	1. 40	OTYP	C4	1.5	STYP
A2	0.43	0.57	D	8.10	8.60
A3	2. 5	4TYP	D1	0. 20	0.35
Α4	0. 59	9TYP	D2	7.62	7.87
A5	0. 95TYP		ф1	3.0	TYP
В	6.3	6.5	0 1	8°	TYP
C1	3.4	3.6	0 2	5°	TYP
C2	0.6	0.8			

• All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,如本公司进行修正,恕不另行通知。)

版本	发行日期	修订简介
V1.0	2012-01-04	改版发行

www.titanmec.com Page 15 of 15 V1.0