1

SINGLE GENERAL PURPOSE OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM741 is a high performance Monolithic Operational Amplifier constructed using the New JRC Planar epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of latch-up tendencies make the NJM741 ideal for use as a voltage follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications.

■ PACKAGE OUTLINE

NJM7410

NJM741M

NJM741

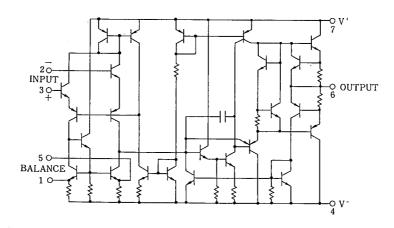
FEATURES

- Operating Voltage
- Single Supply
- With Vio Trim Terminal
- Package Outline

DIP8, DMP8, (SSOP8)

(+3V~+18V)

Bipolar Technology


■ PIN CONFIGURATION

PIN FUNCITON

- 1. Vos Trim
- 2. Input
- 3. + Input
- 4. V -
- 5. Vos Trim
- 5. TOS
- 6. Output
- 7. V*
- 8. NC

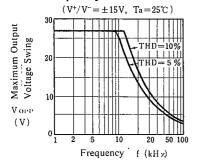
■ EQUIVALENT CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS

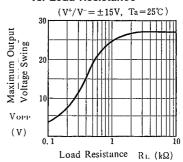
(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*/V-	±18	V
Input Voltage	V _{IC}	±15 (note)	V
Differential Input Voltage	V _{ID}	±30	V
Power Dissipation	PD	(DIP8) 500	mW
		(DMP8) 300	mW
		(SSOP8) 300	mW
Operating Temperature Range	Topr	-40~+85	r
Storage Temperature Range	Tstg	-40~+125	r

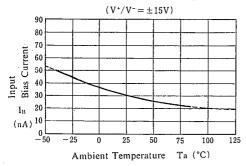
(note) For supply voltage less than \pm 15V, the adsolute maximum input voltage is equal to the supply voltage.

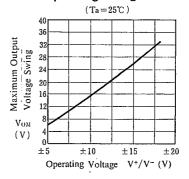

■ ELECTRICAL CHARACTERISTICS

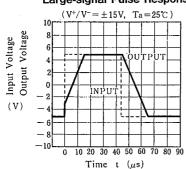
: $(Ta = 25^{\circ}C, V^{+}/V^{-} = \pm 15V)$

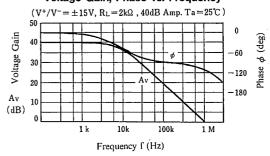

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	Vio	R _S ≦10kΩ		2.0	6.0	mV
Input Offset Current	I _{IO}		_	. 5	200	nA
Input Bias Current	I _{1B}		_	30	500	пA
Input Resistance	R _{IN}		0.3	2.0	_	МΩ
Large-signal Voltage Gain	Av	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	86	110	_	dB;
Maximum Output Voltage Swing 1	V _{OM1}	$R_{L} \ge 10k\Omega$	±12	±14		v
Maximum Output Voltage Swing 2	V _{OM2}	R _L ≥2kΩ	±10	±13	_	v
Input Common Mode Voltage Range	V _{ICM}		±12	±13		v
Common Mode Rejection Ratio	CMR	R _s ≦10kΩ	70	100	_	dB
Supply Voltage Rejection Ratio	SVR	R _s ≦10kΩ	76.5	100	l _	dB
Operating Current	I _{CC}		_	1.7	2.8	mA
Slew Rate	SR	R _L ≥2kΩ	_	0.5		V/μs
Transient Response (Unity Gain) (Rise Time)	tr	$V_{1N} = 20 \text{mV}, R_L = 2 \text{k}\Omega, C_L = 100 \text{pF}$		0.3		μs
Transient Response (Unity Gain) (Overshoot)	to	$V_{1N} = 20 \text{mV}, R_{L} = 2 \text{k}\Omega, C_{L} = 100 \text{pF}$		5.0	_	%

■ TYPICAL CHARACTERISTICS

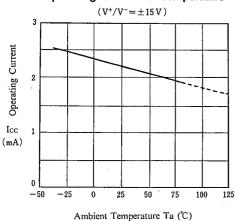

Maximum Output Voltage Swing vs. Frequency


Maximum Output Voltage Swing vs. Load Resistance

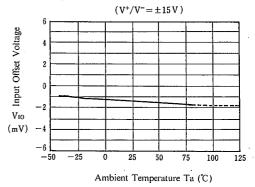

Input Bias Current vs. Temperature


Maximum Output Voltage Swing vs. Operating Voltage

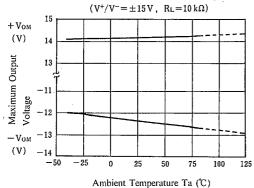
Voltage-follower Large-signal Pulse Response

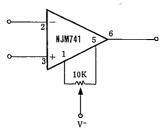


Voltage Gain, Phase vs. Frequency



■ TYPICAL CHARACTERISTICS


Operating Current vs. Temperature


Input Offset Voltage vs. Temperature

Maximum Output Voltage vs. Temperature

M OFFSET ADJUSTMENT CIRCUIT

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.