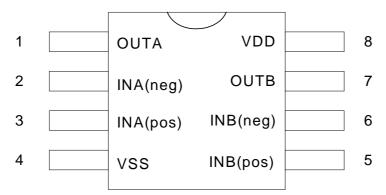


GENERAL DESCRIPTION

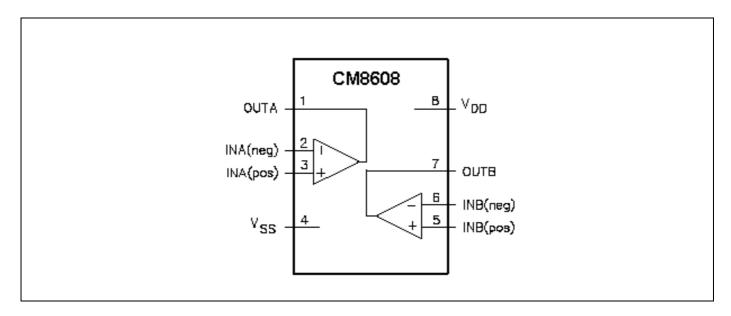

The CM8608 is an integrated class AB stereo headphone driver contained in an SO8 or a DIP8 plastic package. The device is fabricated in a 1 mm CMOS process and has been primarily developed for portable digital audio applications.

FEATURES

- Wide temperature range
- ♦ No switch ON/OFF clicks
- ◆ Excellent power supply ripple rejection.
- ◆ Low power consumption
- ♦ Short-circuit resistant
- High performance
 - high signal-to-noise ratio
 - ♦ high slew rate
 - ♦ low distortion
- Large output voltage swing

PIN CONFIGURATION

SOP-8 (S08)/PDIP (P08) Top View



PIN DESCRIPTION

Pin No.	Symbol	Description
1	OUTA	Output A
2	INA(neg)	Inverting input A
3	INA(pos)	Non-inverting input A
4	VSS	Negative supply
5	INB(pos)	Non-inverting input B
6	INB(neg)	Inverting input B
7	OUTB	Output B
8	VDD	Positive supply

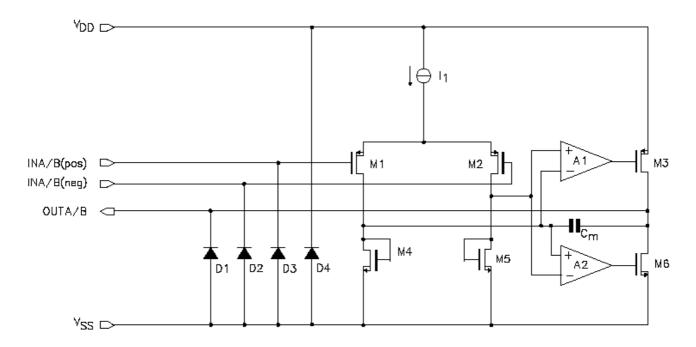
BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Temperature Range	Package
CM8608IP	-40°C to 85°C	8-Pin PDIP (P08)
CM8608IS	-40°ℂ to 85°ℂ	8-Pin SOP (S08)

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum ratings are those values beyond which the device could be permanently damaged.


SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DD}	supply voltage		0	8.0	٧
t _{SC(O)}	output short-circuit duration	T_{amb} = 25 °C; P_{tot} = 1 W	20	-	s
T _{stg}	storage temperature		-65	+150	ô
T _{amb}	operating ambient temperature		-40	+85	°C
V _{esd}	electrostatic discharge	note 1	-2000	+2000	٧
		note 2	-200	+200	V

THERMAL CHARACTERISTICS

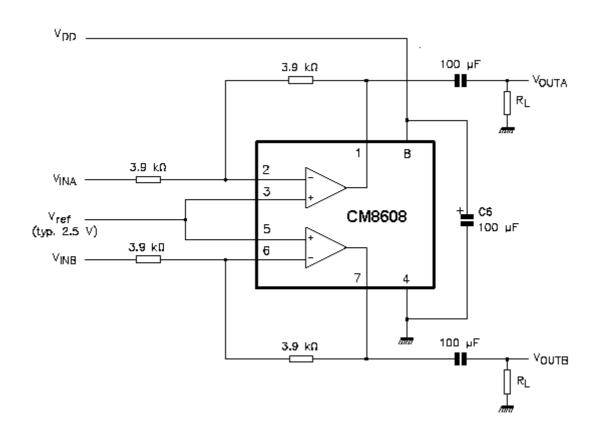
SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air		
	DIP8	109	K/W
	SO8	210	K/W

TYPICAL APPLICATION

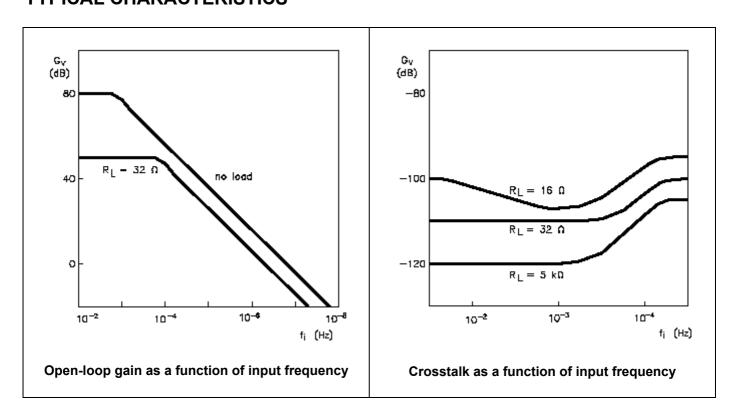
ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications apply T_A=25°C; VSS

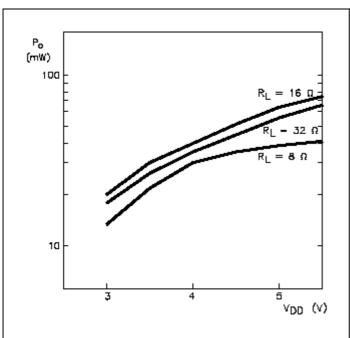
=0V, VDD=+5V, f_j = 1kHZ, R_L = 32 Ω) maximum ratings are stress ratings only and functional device operation is not implied.

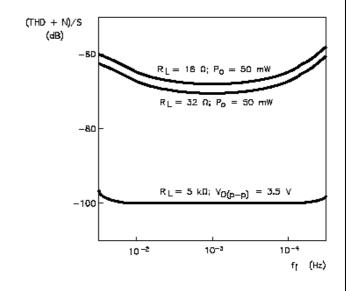
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies				•		•
V _{DD}	supply voltage					
	single		3.0	5.0	7.0	V
	dual		1.5	2.5	3.5	V
V _{SS}	negative supply voltage		-1.5	-2.5	-3.5	V
I _{DD}	supply current	no load	-	3	5	mA
P _{tot}	total power dissipation	no load		15	25	mW
DC characte	ristics		•	•	•	•
V _{I(os)}	input offset voltage			10	-	mV
I _{bias}	input bias current		-	10	-	pA
V _{CM}	common mode voltage		0	-	3.5	V
G _v	open-loop voltage gain	$R_L = 5 k\Omega$	_	70	-	dB
lo	maximum output current	(THD + N)/S < 0.1%	_	60	-	mA
Ro	output resistance		-	0.25	-	Ω
Vo	output voltage swing	note 1	0.75	-	4.25	V
		$R_L = 16 \Omega$; note 1	1.5	-	3.5	V
		$R_L = 5 \text{ k}\Omega$; note 1	0.1		4.9	V
PSRR	power supply rejection ratio	f_i = 100 Hz; $V_{ripple(p-p)}$ = 100 mV		90		dB
α_{cs}	channel separation		_	70	_	dB
		$R_L = 5 k\Omega$	_	105		dB
CL	load capacitance		-	-	200	pF
AC characte	ristics			•	•	•
(THD + N)/S	total harmonic distortion plus	note 2		-70	65	dB
	noise-to-signal ratio			0.03	0.06	%
		note 2; $R_L = 5 k\Omega$	****	-101		dB
				0.0009		%
S/N	signal-to-noise ratio		100	110	****	dB
f_G	unity gain frequency	open-loop; $R_L = 5 \text{ k}\Omega$		5.5		MHz
Po	maximum output power	(THD + N)/S < 0.1%	-	60	-	mW
Ci	input capacitance		-	3	-	pF
SR	slew rate	unity gain inverting	-	5	_	V/µs
В	power bandwidth	unity gain inverting	_	20		kHz

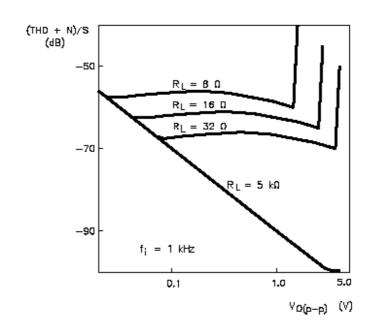

Notes

1. Values are proportional to V_{DD} ; (THD + N)/S < 0.1%.


^{2.} $V_{DD} = 5.0 \text{ V}$; $V_{O(p-p)} = 3.5 \text{ V}$ (at 0 dB).

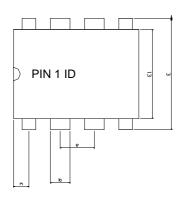

TEST INFORMATION


TYPICAL CHARACTERISTICS

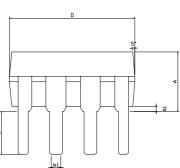


Output power as a function of supply voltage

THD plus noise-to-signal ratio as a function of input frequency

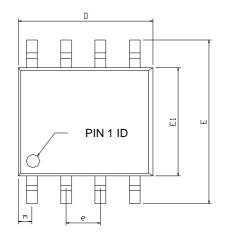


THD plus noise-to-signal ratio as a function of output voltage level

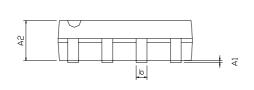


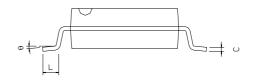
PACKAGE DIMENSION

8-PIN PDIP (P08)



gyupoi g	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHS		
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX
A			4.32			0.170
A1	0.38			0.015		
b	1.40		1.65	0.055		0.065
b1	0.40		0.56	0.016		0.022
С	0.20		0.31	0.008		0.012
D	9.27		9.77	0.365		0.385
E	7.49		8.26	0.295		0.325
E1	6.09		6.61	0.240		0.260
e		2.54			0.100	
L	3.18			0.125		
m	0.50			0.02		
θ	0		15	0		15





8-PIN SOP (S08)

avarbat a	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHS			
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A1	0.10		0.25	0.004		0.010	
A2	1.40		1.55	0.055		0.061	
b	0.30		0.51	0.012		0.020	
С	0.15		0.26	0.006		0.010	
D	4.60		5.06	0.169		0.199	
E	5.79		6.20	0.228		0.244	
E1	3.76		4.01	0.148		0.158	
e		1.27			0.050		
L	0.38		0.69	0.015		0.035	
m	0.43		0.69	0.017		0.027	
θ	0°		8°	0°		8°	

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

5F, No. 11, Park Avenue II, Science-Based Industrial Park, HsinChu City, Taiwan

TEL: +886-3-567 9979 FAX: +886-3-567 9909

http://www.champion-micro.com

Sales & Marketing

11F, No. 306-3, Sec. 1, Ta Tung Rd., Hsichih, Taipei Hsien 221 Taiwan, R.O.C.

TEL: +886-2-8692 1591 FAX: +886-2-8692 1596

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.