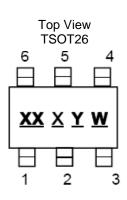
SD3303

3W HIGH POWER WHITE LED DRIVER

Description

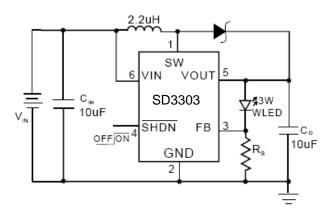
The SD3303 is a set-up DC-DC converter that delivers a regulated output current. The device switches at a 1.0MHz constant frequency, allowing for the use of small value external inductor and ceramic capacitors.

The SD3303 is targeted to be used for driving loads up to 1A from a two-cell alkaline battery. The LED current can be programmed by the external current sense resistor, R_S, connected between the feedback pin (FB) and ground. A low 95mV feedback voltage reduces the power loss in the Rs for better efficiency. With its internal 2A, 100m Ω NMOS switch, the device can provide high efficiency even at heavy load. During the shutdown mode, the feedback resistor R_S and the load are completely disconnected and the current consumption is reduced to less than 1µA.


The SD3303 is available in the 6-lead TSOT26 package.

Features

- LED Power Efficiency: up to 90%
- Current Accuracy: $5\%(V_{IN} = 3.6V \text{ to } 1.8V @V_F = 3.7V)$
- Low Start-Up Voltage: 0.9V (I_{LED} = 270mA)
- Low Hold Voltage: 0.75 (I_{LED} = 200mA)
- 1MHz Switching Frequency
- Uses Small, Low Profile External Components
- Low R_{DS(ON}): 100mΩ (typ)
- Over Temperature Protection
- Low Profile TSOT26 Package
- Pb-Free Package


Typical Applications Circuit

Pin Assignments

Applications

- White LED Torch (Flashlight)
- White LED Camera Flash
- DSC(Digital Still Camera)Flash
- Cellular Camera Phone Flash
- PDA Camera Flash
- Camcorder Torch(Flashlight) Lamp

 $I_{LED} = 750 \text{mA}, R_S = 0.127 \Omega$

SD3303 3W HIGH POWER WHITE LED DRIVER

Pin Description

Pin Number	Pin Name	Function
1	SW	Switch
2	GND	Ground
3	FB	Feedback
4	SHDN	Shut Down
5	VOUT	Output
6	VIN	Input

Block Diagram

Absolute Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability. All voltages are with respect to ground.

Parameter	Rating	Unit
Input Pin Voltage	-0.3 to +6	
SW Pin Voltage	-0.3 to +6	V
SHDN, FB Pin Voltage	-0.3 to +6	
Operating Temperature Range	-40 to +85	
Storage Temperature Range	-65 to +125	°C
Lead Temperature (Soldering, 5 sec)	300	

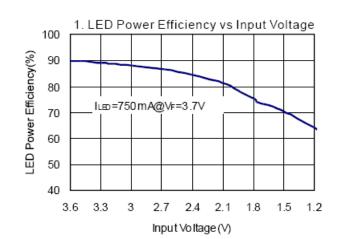
Recommended Operating Conditions (@T_A = +25°C, unless otherwise specified.)

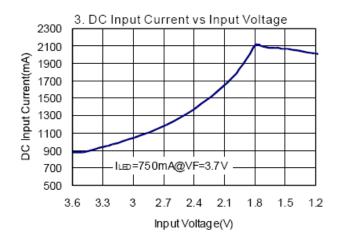
Parameter	Rating	Unit	
Junction Temperature	-40 to +125	°C	
Ambient Temperature	-40 to +85		

Thermal Information

Parameter	Symbol	Package	Max	Unit
Thermal Resistance (Junction to Case)	θ _{JC}	TSOT26	130	°C/W
Thermal Resistance (Junction to Ambient)	θ _{JA}	TSOT26	250	C/VV
Internal Power Dissipation	PD	TSOT26	400	mW

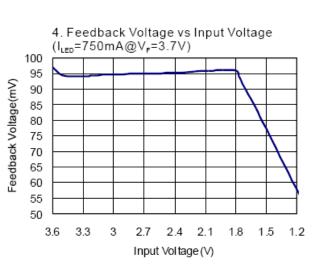
Electrical Characteristics

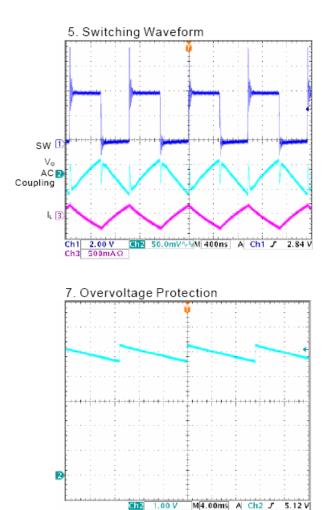

 $(@T_A = +25^{\circ}C, V_{IN} = 2.4V, I_{LED} = 750mA, V_{SHDN} = V_{IN}, L = 2.2\mu H, C_{IN} = 10\mu F, C_O = 10\mu F, unless otherwise specified.)$

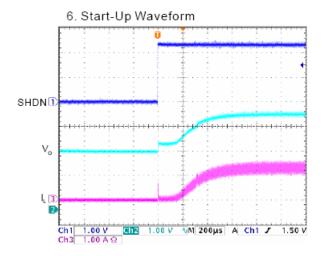

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Input Voltage Range	V _{IN}		0.9		V _F -0.2 (Note 1)	V
Feedback Voltage	V _{FB}		90	95	100	mV
Start-Up Voltage	V _{START}	V _{IN} : 0V – 3V, I _{LED} = 370mA		0.9		V
Hold Voltage	VHOLD	V _{IN} : 3V – 0V, I _{LED} : 750mA – 200mA		0.75		V
Oscillator Frequency	Fosc		0.85	1.0	1.15	MHz
SHDN Input High	V _{SH}	V _{IN} = 1.8V	1.0			V
SHDN Input Low	V _{SL}	V _{IN} = 1.8V			0.4	V
Over Temperature Shutdown	OTS			150		°C
Over Temperature Hysteresis	OTH			15		°C
Maximum Output Current Range	I _{O(MAX)}		750			mA
Quiescent Current	Ι _Q	I _{LED} = 0mA, V _O = 3.4V, Device Switching @ 1MHz		1	3	mA
Shutdown Current	I _{SD}	Shutdown Mode			1	μA
Switch On Resistance	R _{DS(ON)}	V _O = 3.4V		0.1		Ω
Current Limit	I _{LIM}	V _O = 3.4V	2			А
Efficiency	η	I _{LED} = 750mA		90		%

Note: 1. VF – LED forward voltage.

SD3303 3W HIGH POWER WHITE LED DRIVER


Typical Performance Characteristics (@T_A = +25°C, L = 2.2µF, C_{IN} = 10µF, C_O = 10µF, unless otherwise specified.)


800 750 LED Current(mA) 700 LED=750mA@VF=3.7V 650 600 550 500 450 400 3.6 3.3 3 2.7 2.4 2.1 1.8 1.5 1.2 Input Voltage(V)


2. LED Current vs Input Voltage

SD3303 3W HIGH POWER WHITE LED DRIVER

Typical Performance Characteristics (cont.) $@T_A = +25^{\circ}C$, $L = 2.2\mu$ F, $C_{IN} = 10\mu$ F, $C_O = 10\mu$ F, unless otherwise specified.)

SD3303

3W HIGH POWER WHITE LED DRIVER

Application Information

Inductor Selection

The SD3303 can use small value inductors due to its switching frequency of 1MHz. The value of inductor will focus in the range of 2.2μ H to 4.7μ H for most SD3303 applications. In typical high current whit e LED applications, it is recommended to use a 4.7μ H inductor. The inductor should have low DCR (DC resistance) to minimize the I²R power loss, and it requires a current rating of 2A to handle the peak inductor current without saturating.

Capacitor Selection

An input capacitor is required to reduce the input ripple and noise for proper operation of the SD303. For good input decoupling, Low ESR (equivalent series resistance) capacitors should be used at the input. At least 2.2µF input capacitor is recommended for most applications.

A minimum output capacitor value of 6.8µF is recommended under normal operating conditions, while a 10µF-22µF capacitor may be required for higher power LED current. A reasonable value of the output capacit tor depends on the LED current. The ESR of the output capacitor is the important parameter to determine the output voltage ripple of the converter, so low ESR capacitors should be used at the output to reduce the output voltage ripple. The small size of ceramic capacitors is an excellent choice for SD3303 applications. The X5R and X7R ty pes are preferred because they maintain capacitance over wide voltage and temperature ranges.

Diode Selection

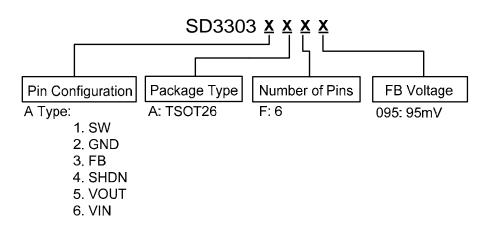
It's indispensable to use a Schottky diode rated at 2A with the SD3303. Using a Schottky diode with a lower forward voltage drop is better to improve the power LED efficiency, and its voltage rating should be greater than the output voltage. In application, the ON Semi conductor MBRA210LT3G is recommended.

LED Current Setting

The LED current is set by the single external R_S resistor connected to the FB pin as shown in the typical application circuit on Page 1. The typical FB reference is internally regulated to 95mV. The LED current is 95mV/R_S. It's recommended to use a 1% or better precision resistor for the better LED current accuracy. The formula and table 1 for R_S selection are shown as follows:

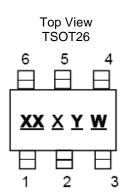
$$R_S = 95mV / I_{LED}$$

Table 1. R_S Resistor Value Selection


Standard Value (Ω)	I _{LED} (mA)
0.18	528
0.15	633
0.12	792
0.10	950

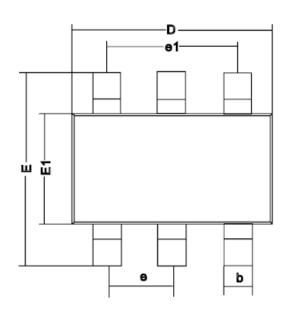
PCB Layout Guidelines

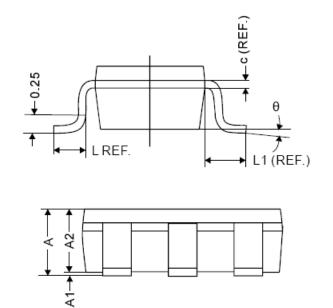
As for all switching power supplies, the layout and components placement of the SD3303 is an important step in the design; especially at high peak currents and high switching frequencies.


The input capacitor and output capacitor should be placed respectively as close as possible to the input pin and output pin of the IC; the inductor and schottky diode should be placed as close as possible to the switch pin by using wide and short traces for the main current path; the current sense resistor should be placed as close as possible between the ground pin and feedback pin.

Ordering Information

Part Number	Marking	Package Type	Standard Package
SD3303AAF095	Refer to Marking Information Below	TSOT26	3000 Units/Tape&Reel


Marking Information



XX: Product Code X: Internal Code Y: Year W: Weekly

Package Outline Dimensions (All dimensions in mm.)

TSOT26

REF.	Millimeter		
KEF.	Min	Max	
Α	1.10MAX		
A1	0	0.10	
A2	0.70	1	
с	0.12F	REF.	
D	2.70	3.10	
Е	2.60	3.00	
E1	1.40	1.80	
L	0.45F	REF.	
L1	0.60REF.		
θ	0°	10°	
b	0.30	0.50	
е	0.95REF.		
e1	1.90REF.		