SDAS225A - DECEMBER 1982 - REVISED JANUARY 1995

- Carry Output for n-Bit Cascading
- Buffer-Type Outputs Drive Bus Lines Directly
- Choice of Asynchronous or Synchronous **Clearing and Loading**
- Internal Look-Ahead Circuitry for Fast Cascading
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

These binary counters are programmable and offer synchronous and asynchronous clearing as well as synchronous and asynchronous loading. All synchronous functions are executed on the positive-going edge of the clock.

The clear function is initiated by applying a low level to either asynchronous clear (ACLR) or synchronous clear (SCLR). ACLR (direct clear) overrides all other functions of the device, while SCLR overrides only the other synchronous functions. Data is loaded from the A, B, C, and D inputs by applying a low level to asynchronous load (ALOAD) or by the combination of a low level synchronous load (SLOAD) at and а positive-going clock transition. The counting function is enabled only when enable P (ENP), enable T (ENT), ACLR, ALOAD, SCLR, and SLOAD are all high.

		OR	ACKAGE
ALOAD		20]v _{cc}
CLK [2	19] RCO
A [3	18] cco
в [4	17] OE
с[5	16] Q _A
D [6	15] Q _B
ENP [7	14] Q _C
ACLR	8	13] Q _D
SCLR	9	12] ENT
GND [10	11	SLOAD

SN

SN54ALS561A ... FK PACKAGE (TOP VIEW)

A high level at the output-enable (\overline{OE}) input forces the Q outputs into the high-impedance state, and a low level enables those outputs. Counting is independent of \overline{OE} . ENT is fed forward to enable the ripple-carry output (RCO) to produce a high-level pulse while the count is maximum (15). The clocked carry output (CCO) produces a high-level pulse for a duration equal to that of the low level of the clock when RCO is high and the counter is enabled (ENP and ENT are high); otherwise, CCO is low. CCO does not have the glitches commonly associated with a ripple-carry output. Cascading is normally accomplished by connecting RCO or CCO of the first counter to ENT of the next counter. However, for very high-speed counting, RCO should be used for cascading because CCO does not become active until the clock returns to the low level.

The SN54ALS561A is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALS561A is characterized for operation from 0°C to 70°C.

SDAS225A - DECEMBER 1982 - REVISED JANUARY 1995

	FUNCTION TABLE									
		OPERATION								
OE	ACLR	ALOAD	SCLR	SLOAD	ENT	ENP	CLK	OPERATION		
н	Х	Х	Х	Х	Х	Х	Х	Q outputs disabled		
L	L	Х	Х	Х	Х	Х	Х	Asynchronous clear		
L	Н	L	Х	Х	Х	Х	Х	Asynchronous load		
L	Н	Н	L	Х	Х	Х	\uparrow	Synchronous clear		
L	Н	н	н	L	Х	Х	\uparrow	Synchronous load		
L	Н	н	н	н	Н	Н	\uparrow	Count		
L	Н	Н	Н	Н	L	Х	Х	Inhibit counting		
L	Н	Н	Н	Н	Х	L	Х	Inhibit counting		

logic symbol[†]

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SDAS225A - DECEMBER 1982 - REVISED JANUARY 1995

logic diagram (positive logic)

SDAS225A - DECEMBER 1982 - REVISED JANUARY 1995

typical load, count, and inhibit sequences

SDAS225A - DECEMBER 1982 - REVISED JANUARY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC}	
Operating free-air temperature range, T _A : SN54ALS561A	-55°C to 125°C
SN74ALS561A	0°C to 70°C
Storage temperature range	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

				SN5	54ALS56	61A	SN7	SN74ALS561A		UNIT	
				MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
VCC	Supply voltage			4.5	5	5.5	4.5	5	5.5	V	
VIH	High-level input voltage			2			2			V	
VIL	Low-level input voltage					0.7			0.8	V	
	LP-b local activity compared	Q outputs				-1			-2.6		
ЮН	High-level output current	CCO and RCO				-0.4			M MAX 5 5.5 0.8	mA	
	I and a set and a set as many of	Q outputs				12			24		
IOL	Low-level output current	CCO and RCO				4			8	mA	
fclock	Clock frequency	•		0		20	0		30	MHz	
	Pulse duration	ACLR or ALOAD I	ow	20	20		15			ns	
tw		CLK high		20			16.5				
		CLK low		25			16.5				
		ENP, ENT	High	25			20				
			Low	25			20			1	
		Data at A, B, C, D		25			20				
	Setup time before CLK [↑]			Low	21			15			
t _{su}		SCLR	High (inactive)	35			30			ns	
			Low	20			15				
		SLOAD	High (inactive)	35			30				
		ACLR or ALOAD in	nactive	12			10				
t _h	Hold time after CLK↑ for da	ata, ENP, ENT, SCLR, or SLOAD		0			0			ns	
TA	Operating free-air tempera	ture		-55		125	0		70	°C	

SDAS225A - DECEMBER 1982 - REVISED JANUARY 1995

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN5	SN54ALS561A			SN74ALS561A		
		TEST CO	CONDITIONS		TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
VIK		V _{CC} = 4.5 V,	lj = – 18 mA			-1.5			-1.5	V
	All outputs	V _{CC} = 4.5 V to 5.5 V,	I _{OH} = -0.4 mA	V _{CC} -2	2		V _{CC} -2	2		
Vон	O contracto		I _{OH} = -1 mA	2.4	3.3					V
	Q outputs	$V_{CC} = 4.5 V$	$I_{OH} = -2.6 \text{ mA}$				2.4	3.2		
	Q outputs		I _{OL} = 12 mA		0.25	0.4		0.25	0.4	
V.	Q oulpuis	$V_{CC} = 4.5 V$	I _{OL} = 24 mA					0.35	0.5	v
VOL	CCO and RCO		$I_{OL} = 4 \text{ mA}$		0.25	0.4		0.25	0.4	
		$V_{CC} = 4.5 V$	I _{OL} = 8 mA					0.35	0.5	
IOZH		V _{CC} = 5.5 V,	V _O = 2.7 V			20			20	μA
IOZL		V _{CC} = 5.5 V,	V _O = 0.4 V			-20			-20	μΑ
1.	ENP and ENT		<u>)/.</u> 7)/			0.2			0.2	A
I	Other inputs	V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mA
1	ENP and ENT		V/- 0.7.V/			40			40	۸
ЧН	Other inputs	$v_{CC} = 5.5 v,$	$V_{CC} = 5.5 V,$ $V_{I} = 2.7 V$		20				20	μA
IIL		V _{CC} = 5.5 V,	V _I = 0.4 V			-0.2			-0.2	mA
	CCO and RCO		N 0.05 V	-15		-70	-15		-70	A
¹ 0 [‡]	Q	V _{CC} = 5.5 V,	V, V _O = 2.25 V	-20		-112	-30		-112	mA
			Outputs high		17	27		17	27	
ICC		V _{CC} = 5.5 V	Outputs low		21	33		21	33	mA
			Outputs disabled		22	36		22	36	

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.
[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, I_{OS}.

SN54ALS561A, SN74ALS561A SYNCHRONOUS 4-BIT COUNTERS WITH 3-STATE OUTPUTS SDAS225A – DECEMBER 1982 – REVISED JANUARY 1995

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V(Cl R1 R2 Tg	UNIT			
			SN54AL	S561A	SN74AL	S561A	
			MIN	MAX	MIN	MAX	
fmax			20		30		MHz
^t PLH	CLK	Any Q	4	15	4	12	ns
^t PHL	CLK	Any Q	5	21	5	18	115
^t PLH	CLK	RCO	9	35	9	29	ns
^t PHL	CLK	KCO	8	29	8	24	115
^t PLH	CLK	ссо	8	35	8	26	ns
^t PHL	CLK	000	5	20	5	16	115
^t PLH		Any Q	10	38	10	35	
^t PHL	ALOAD	Any Q	7	27	7	23	ns
^t PLH		RCO	15	50	15	40	ns
^t PHL	ALOAD		12	35	12	30	
^t PLH	ALOAD	ссо	25	65	25	55	200
^t PHL	ALOAD	CCO	12	42	12	33	ns
^t PLH		Any Q	8	35	8	30	ns
^t PHL	A, B, C, or D		7	27	7	22	
^t PLH		RCO	5	20	5	16	ns
tPHL	ENT	KCO	4	18	4	14	115
^t PLH		ССО	12	35	12	32	200
^t PHL	ENT	000	4	15	4	12	ns
^t PLH		ссо	5	22	5	18	ns
^t PHL	ENP		4	14	4	12	115
^t PHL	ACLR	Any Q	7	28	7	22	ns
^t PZH		Amir ()	5	24	5	19	
^t PZL	OE	Any Q	8	28	8	23	ns
^t PHZ	OE	Any Q	2	12	2	10	
^t PLZ		Any Q	2	20	20 4		ns

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

SDAS225A - DECEMBER 1982 - REVISED JANUARY 1995

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: $PRR \le 1$ MHz, $t_f = t_f = 2$ ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated