- Carry Output for n-Bit Cascading
- Buffer-Type Outputs Drive Bus Lines Directly
- Choice of Asynchronous or Synchronous Clearing and Loading
- Internal Look-Ahead Circuitry for Fast Cascading
- Package Options Include Plastic Small-Outline (DW) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs

description

These binary counters are programmable and offer synchronous and asynchronous clearing as well as synchronous and asynchronous loading. All synchronous functions are executed on the positive-going edge of the clock.

The clear function is initiated by applying a low level to either asynchronous clear ($\overline{\mathrm{ACLR}}$) or synchronous clear (SCLR). $\overline{\mathrm{ACLR}}$ (direct clear) overrides all other functions of the device, while $\overline{\mathrm{SCLR}}$ overrides only the other synchronous functions. Data is loaded from the A, B, C, and D inputs by applying a low level to asynchronous load ($\overline{\text { ALOAD }}$) or by the combination of a low level at synchronous load (SLOAD) and a positive-going clock transition. The counting function is enabled only when enable P (ENP), SN54ALS561A... J PACKAGE
SN74ALS561A... DW OR N PACKAGE (TOP VIEW)

SN54ALS561A . . . FK PACKAGE (TOP VIEW)
 enable T (ENT), $\overline{A C L R}, \overline{A L O A D}, \overline{S C L R}$, and SLOAD are all high.
A high level at the output-enable ($\overline{\mathrm{OE}})$ input forces the Q outputs into the high-impedance state, and a low level enables those outputs. Counting is independent of $\overline{\mathrm{OE}}$. ENT is fed forward to enable the ripple-carry output (RCO) to produce a high-level pulse while the count is maximum (15). The clocked carry output (CCO) produces a high-level pulse for a duration equal to that of the low level of the clock when RCO is high and the counter is enabled (ENP and ENT are high); otherwise, CCO is low. CCO does not have the glitches commonly associated with a ripple-carry output. Cascading is normally accomplished by connecting RCO or CCO of the first counter to ENT of the next counter. However, for very high-speed counting, RCO should be used for cascading because CCO does not become active until the clock returns to the low level.

The SN54ALS561A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ALS561A is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

FUNCTION TABLE

INPUTS								OPERATION
$\overline{\mathrm{OE}}$	$\overline{\text { ACLR }}$	$\overline{\text { ALOAD }}$	$\overline{\text { SCLR }}$	$\overline{\text { SLOAD }}$	ENT	ENP	CLK	
H	X	X	X	X	X	X	X	Q outputs disabled
L	L	X	X	X	X	X	X	Asynchronous clear
L	H	L	X	X	X	X	X	Asynchronous load
L	H	H	L	X	X	X	\uparrow	Synchronous clear
L	H	H	H	L	X	X	\uparrow	Synchronous load
L	H	H	H	H	H	H	\uparrow	Count
L	H	H	H	H	L	X	X	Inhibit counting
L	H	H	H	H	X	L	X	Inhibit counting

logic symbol \dagger

† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)

typical load, count, and inhibit sequences

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger
\qquad

SN74ALS561A $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage temperature range
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN5	4ALS56		SN7	4ALS56		UNIT		
		MIN	TYP \dagger	MAX	MIN	TYP \dagger	MAX					
$\mathrm{V}_{\text {IK }}$				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	II $=-18 \mathrm{~mA}$			-1.5			-1.5	V
V_{OH}	All outputs	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ,	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			$\mathrm{V}_{\mathrm{CC}}-2$			V		
	Q outputs	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{OH}=-1 \mathrm{~mA}$	2.4	3.3							
			$\mathrm{I} \mathrm{OH}=-2.6 \mathrm{~mA}$				2.4	3.2				
VOL	Q outputs	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
			$\mathrm{IOL}=24 \mathrm{~mA}$					0.35	0.5			
	CCO and RCO	$\mathrm{V} C \mathrm{C}=4.5 \mathrm{~V}$	$\mathrm{I} \mathrm{OL}=4 \mathrm{~mA}$		0.25	0.4		0.25	0.4			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=8 \mathrm{~mA}$					0.35	0.5			
IOZH		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
IOZL		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$			-20			-20	$\mu \mathrm{A}$		
I	ENP and ENT	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	V I $=7 \mathrm{~V}$			0.2			0.2	mA		
	Other inputs					0.1			0.1			
1	ENP and ENT	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			40			40	$\mu \mathrm{A}$		
${ }_{1}$	Other inputs					20			20			
IIL		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.2			-0.2	mA		
	CCO and RCO	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-15		-70	-15		-70	mA		
O^{+}	Q			-20		-112	-30		-112			
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Outputs high		17	27		17	27	mA		
		Outputs low		21	33		21	33				
		Outputs disabled		22	36		22	36				

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.
switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAXt } \end{aligned}$				UNIT
			SN54ALS561A		SN74ALS561A		
			MIN	MAX	MIN	MAX	
$f_{\text {max }}$			20		30		MHz
tPLH	CLK	Any Q	4	15	4	12	ns
tPHL			5	21	5	18	
tPLH	CLK	RCO	9	35	9	29	ns
tPHL			8	29	8	24	
tPLH	CLK	CCO	8	35	8	26	ns
tPHL			5	20	5	16	
tPLH	$\overline{\text { ALOAD }}$	Any Q	10	38	10	35	ns
tPHL			7	27	7	23	
tPLH	$\overline{\text { ALOAD }}$	RCO	15	50	15	40	ns
tPHL			12	35	12	30	
tPLH	$\overline{\text { ALOAD }}$	CCO	25	65	25	55	ns
tPHL			12	42	12	33	
tPLH	A, B, C, or D	Any Q	8	35	8	30	ns
tPHL			7	27	7	22	
tPLH	ENT	RCO	5	20	5	16	ns
tPHL			4	18	4	14	
tPLH	ENT	CCO	12	35	12	32	ns
tPHL			4	15	4	12	
tPLH	ENP	CCO	5	22	5	18	ns
tPHL			4	14	4	12	
tPHL	$\overline{\mathrm{ACLR}}$	Any Q	7	28	7	22	ns
tPZH	$\overline{\mathrm{OE}}$	Any Q	5	24	5	19	ns
tPZL			8	28	8	23	
tPHZ	$\overline{O E}$	Any Q	2	12	2	10	ns
tPLZ			2	20	4	15	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

Voltage waveforms
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. When measuring propagation delay items of 3 -state outputs, switch S1 is open.
D. All input pulses have the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}$, duty cycle $=50 \%$.

E . The outputs are measured one at a time with one transition per measurement.
Figure 1. Load Circuits and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

