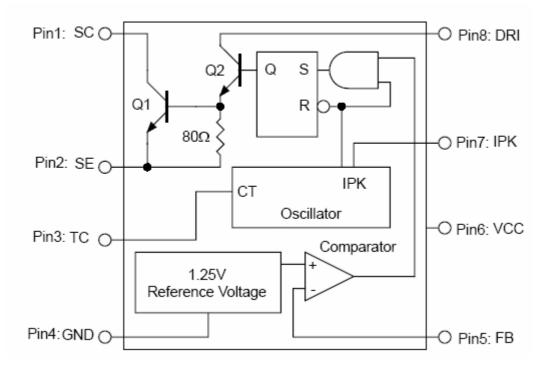

FEATURES

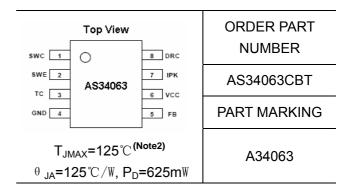
- Operation from 3.0V to 40V Input Voltage
- Low Standby Current
- Current Limiting
- Internal 1.6A Peak Current Switch
- Low Quiescent Current at 1.6mA
- Output Voltage Adjustable
- Frequency Operation from 100Hz to 100KHz
- Internal ±1.8% Reference
- SOP8L Leadfree Package


GENERAL DESCRIPTION

The AS34063 Series is a monolithic control circuit containing the primary functions required for DC-to-DC converters. These devices consists of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series is specifically designed for incorporating in Step-Down and Step-Up and Voltage-Inverting applications with a minimum number of external components.

PIN CONNECTIONS

FUNCTIONAL BLOCK DIAGRAM



ABSOLUTE MAXIMUM RATINGS

(Note1)

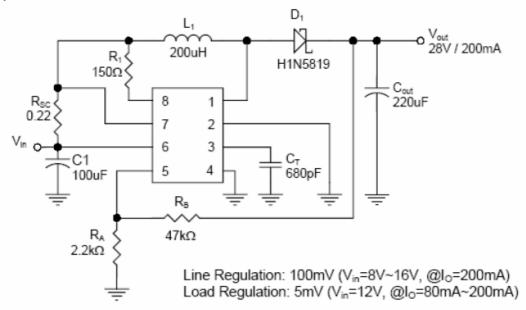
Power Supply Voltage	40V
Comparator Input Voltage	
Switch Collector Voltage	40V
Switch Emitter Voltage	40V
Switch Current	1.5A
Power Dissipation(Ta=25°C)	625mW
Operating Temperature Range	0°C to 70°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature(Soldering, 10sec	ം)300℃

PACKAGE/ORDER INFORMATION

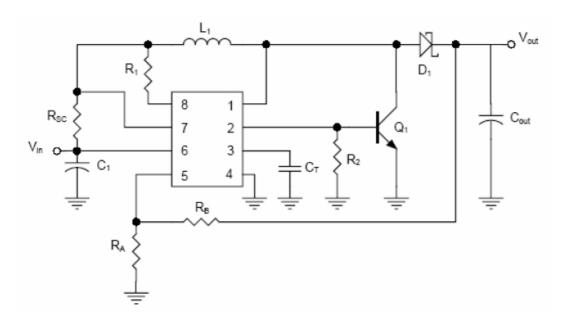
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: T_A is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula:

 $T_J = TA + PD \times \Theta_{JA}$

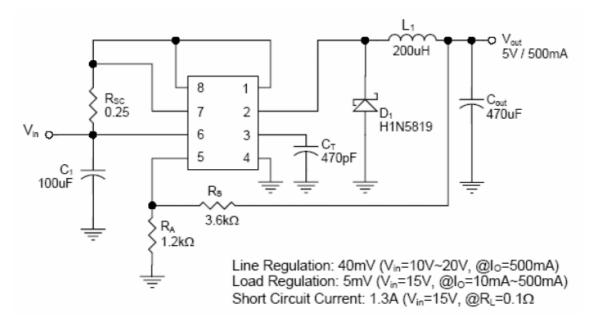

ELECTRICAL CHARACTERISTICS

 V_{CC} = 5.0V, T_A =0~ 70°C Unless otherwise noted

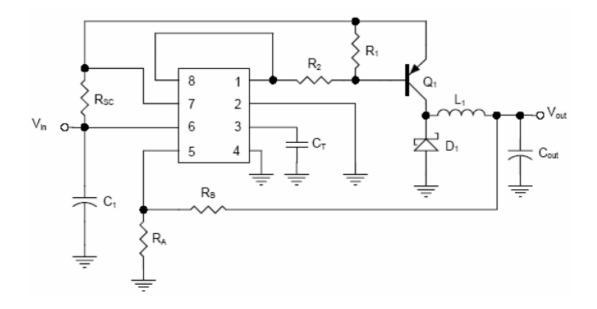

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
Oscillator						
Frequency	V _{PIN5} =0V, C _T =1.0nF, T _A =25°C	24	33	42	KHz	
Charge Current	V _{CC} =5.0V to 40V, T _A =25°C	10	25	40	μA	
Discharge Current	V_{CC} =5.0V to 40V, T_A =25 $^{\circ}$ C	100	150	200	μA	
Discharge to Charge Current Ratio	Pin7 to Vcc, T _A =25℃	5.2	6.0	7.5	-	
Current Limit Sense Voltage	I _{chg} =I _{dischg} , T _A =25℃	250	300	350	mV	
Output Switch Section						
Saturation Voltage, Darlington Connection	I _{SW} =1.0A, Pins 1,8 connected	-	1.0	1.3	V	
Saturation Voltage	I _{SW} =1.0A, I _D =50mA -		0.4	0.7	V	
DC Current Gain	I _{SW} =1.0A, V _{CE} =5.0V	35	120	-		
Collector Off-State Current	V _{CE} =40V, T _A =25°C		10	100	μA	
Comparator Section						
Threshold Voltage		1.227	1.25	1.273	V	
Threshold Voltage Line Regulation	V _{CC} =5.0V to 40V	-	1.5	6	mV	
Input Bias Current	V _{IN} =0V		40	400	nA	
Total Device						
Supply Current	V_{CC} =5V to 40V, C_T =1.0nF, Pin7= V_{CC} , V_{Pin5} $>V_{FB}$, Pin2=Gnd, remaining pins open	-	1.6	3	mA	

TYPICAL APPLICATION CIRCUIT 1

Step – Up Converter

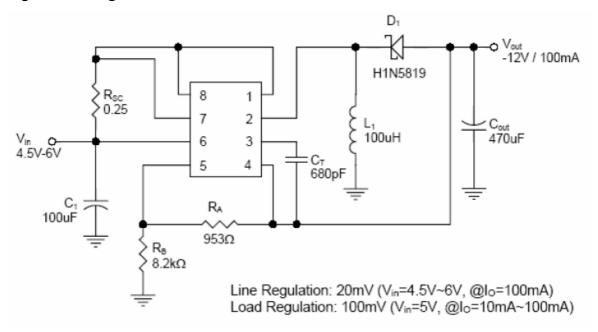


High Current Step – Up Converter

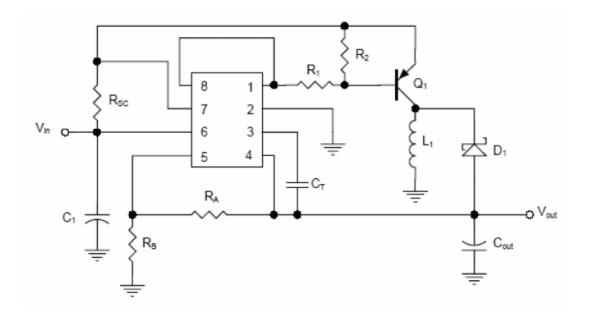


TYPICAL APPLICATION CIRCUIT 2

Step - Down Converter



High Current Step - Down Converter



TYPICAL APPLICATION CIRCUIT 3

Voltage Inverting Converter

High Current Voltage Inverting Converter

DESIGN FORMULA TABLE

Calculation	Step-Up	Step-Down	Voltage-Inverting	
+ /+	Vout +V _F -V _{in(min)}	v _{out} +v _F	Iv _{out} I+v _F	
t _{on} /t _{off}	V _{in(min)} - V _{sat}	V _{in(min)} -V _{sat} - V _{out}	V _{in} -V _{sat}	
$(t_{on} + t_{off})$	1/f	1/ f	1/f	
	t _{on} +t _{off}	t _{on} +t _{off}	t _{on} +t _{off}	
t _{off}	t _{on} +1	t _{on} +1	t _{on} +1	
t _{on}	(t _{on} +t _{off})-t _{off}	(t _{on} +t _{off})-t _{off}	(t _{on} +t _{off})-t _{off}	
C _T	4.0×10 ⁻⁵ t _{on}	4.0×10 ⁻⁵ t _{on}	4.0×10 ⁻⁵ t _{on}	
I _{pk} (switch)	2I _{out(max)} (t _{on} /t _{off} +1)	2I _{out(max)}	2I _{out(max)} (t _{on} /t _{off} +1)	
R _{sc}	0.3/I _{pk(switch)}	0.3/I _{pk(switch)}	0.3/I _{pk(switch)}	
L _(min)	$L_{(min)} = \frac{(V_{in(min)} - V_{sat})}{I_{pk(switch)}} t_{on(max)}$	$\frac{(V_{\text{in(min)}} - V_{\text{sat}} - V_{\text{out}})}{t_{\text{on(max)}}} t_{\text{on(max)}}$	(V _{in(min)} – V _{sat})	
		I _{pk(switch)} con(max)	I _{pk(switch)} t _{on(max)}	
	9——I _{out} t _{on}	I _{pk(switch)} (t _{off} +t _{on})	9————	
Co	V _{ripple(pp)}	8V _{ripple(pp)}	V _{ripple(pp)}	

V_{sat} = Saturation voltage of the output switch.

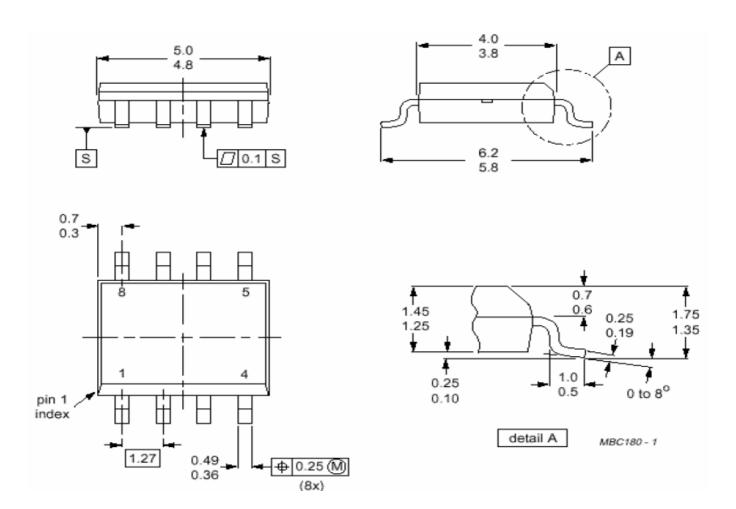
The following power supply characteristics must be chosen:

V_{in} -Nominal input voltage.

Vout -Desired output voltage, |Vout|=1.25(1+R2/R1)

I_{out} -Desired output current.

f_{min}-Minimum desired output switching frequency at the selected values of V_{in} and I_o.


V_{ripple(pp)} -Desired peak-to-peak output ripple voltage, In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

V_F = Forward voltage drop of the output rectifier.

PACKAGE DESCRIPTION Dimensions in millimeters unless otherwise noted

Package 8-Lead Plastic SOP-8L

© Anisem Technology Co., Itd

Anisem Technology assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnisemTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual property rights are implied.

AnisemTech reserves the right to make changes to their products or specifications or to discontinue any product or service without notice. Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

AnisemTech warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with AnisemTech's standard warranty. Testing and other quality control techniques are utilized to the extent AnisemTech deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed.

