

MODULE NO.: LPST128064A00-AB DOC.REVISION: 0.0

	SIGNATURE		
PREPARED BY	Fr.li	17-Feb-05	
APPROVED BY (R&D)	Wayne Zhao	18-Feb-05	
APPROVED BY (Marketing)	Nick Poon	18-Feb-05	

PRODUCT PREVIEW

Product Part#:	LPST128064A00-AB
Product Name:	128x64 Area Color OLED Module
Revision:	0.0
Date:	Feb'2005

This document contains information on a new product. Specifications and information herein are subject to change without notice.

REVISION RECORD

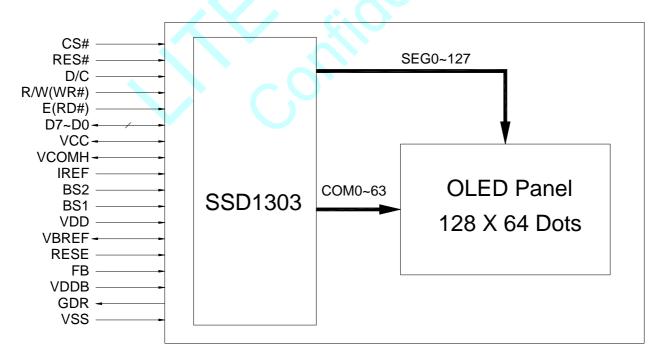
Revision	Description of Revision	Revision date	Remark
0.0	Initial release	17-Feb-05	
		\mathbf{A}	

TABLE OF CONTENTS

1. Functions & features	1
2. Mechanical specifications	1
3. Block diagram	1
4. Dimensional outline	2
5. Pin description	3
6. Absolute maximum ratings	4
7. Optics & electrical characteristics	5
8. Electrical characteristics	5
9. Control and display command	9
10. Reference application circuit	12
11. Quality specifications	16

<u>1. FUNCTIONS & FEATURES</u>

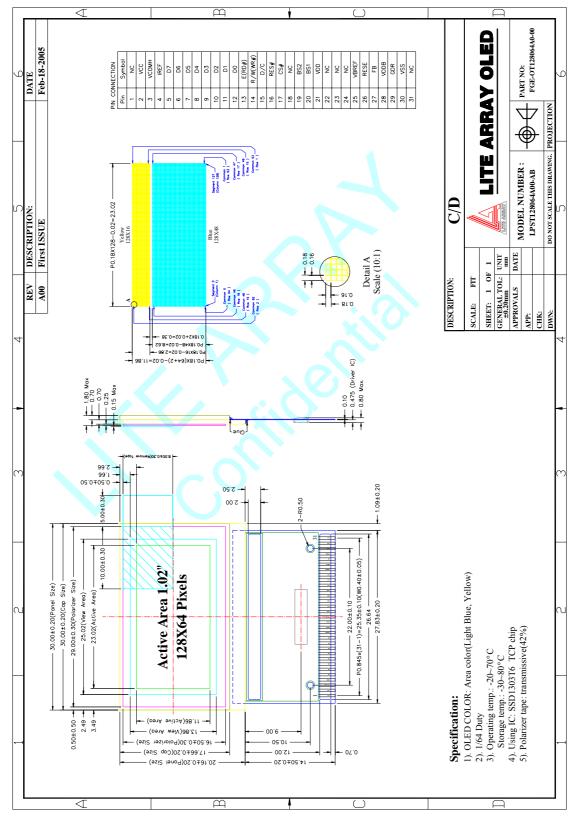
- 1.1. Format
- 1.2. Display mode
- 1.3. Display color
- 1.4. Duty


- : 128*64 dots
- : Passive Matrix
- : Area Color (Light Blue, Yellow)
- : 1/64

2. MECHANICAL SPECIFICATIONS

- 2.1. Module size
- 2.2. Panel size
- 2.3. Viewing area
- 2.4. Active area
- 2.5. Dot pitch
- 2.6. Dot size
- 2.7. Thickness(with polarizer)
- 2.8. Weight

- : 30.00mm(W)*34.66mm(H) : 30.00mm(W)*20.16mm(H) : 25.02mm(W)*13.86mm(H) : 23.02mm(W)*11.86mm(H) : 0.18mm(W)*0.18mm(H) : 0.16mm(W)*0.16mm(H) : 1.80mm
- : 2.0g


<u>3. BLOCK DIAGRAM</u>

4. DIMENSIONAL OUTLINE

5. PIN DESCRIPTION

Pin no.	Symbol	Function
21	VDD	This is the supply voltage pin to logic circuit. It must be connected to the external power source.
30	VSS	This is the ground pin and is a reference for the logic pins. It must be connected to the external ground.
2	VCC	Supply voltage for OLED This is the supply voltage for OLED system and it is the most positive voltage supply pin of the chip. It can be supplied externally or generated internally by using internal DC/DC voltage converter.
3	VCOMH	This is an input pin and a capacitor should be connected between VCOMH and VSS.
4	IREF	This is a segment current reference pin. A resistor should be connected between IREF and VSS
28	VDDB	This is a supply voltage pin for internal buffer DC/DC voltage converter. It must be connected to VDD when the converter is used. When use external VCC, the pin should be left open.
29	GDR	This is an output pin to drive the gate of the external NMOS of the booster circuit. When use external VCC, the pin should be left open.
27	FB	This is a feedback resistor input pin for the booster circuit. It is used to adjust the booster output voltage VCC. When use external VCC, the pin should be left open.
26	RESE	This is a source current pin of the external NMOS of the booster circuit. When use external VCC, the pin should be left open.
25	VBREF	This is an internal voltage reference pin for booster circuit. A stabilization capacitor should be connected to VSS. When use external VCC, the pin should be left open.
20, 19	BS1, BS2	 These pins are for MCU selection. BS1=0 and BS2=1 for 6800 parallel interface BS1=1 and BS2=1 for 8080 parallel interface BS1=0 and BS2=0 for SPI
17	CS#	This pin is the chip select input. Pull "Low" to enable the chip for MCU communication.
16	RES#	This pin is reset signal input.Pull "Low" for the initialization of the chip.
15	D/C	 This pin is used for Data/Command selection. Pull "Low" to set the D7~D0 inputs as command to control the chip. Pull "High" to set the D7~D0 inputs as display data.
14	R/W(WR#)	 This pin is MCU interface input. For 6800-series parallel interface, This pin is used as Read/Write (R/W) selection input. Pull "High" to set Read mode provided that CS# is "Low". Pull "Low" to set Write mode provided that CS# is "Low". For 8080-series parallel interface, This pin is used for receiving the Write (WR#) signal. Pull "Low" to initiate data write operation provided that CS# is "Low"; Pull "High" to stop Write operation. For Serial peripheral interface, This pin must be connected to VSS.

Pin no.	Symbol	Function
13	E(RD#)	 This pin is MCU interface input. For 6800-series parallel interface, This pin is used as the Enable (E) signal. Pull "High" to enable the chip to initiate Read/Write operation provided that CS# is "Low". Pull "Low" to disable the Read/Write operation. For 8080-series parallel interface, This pin is used for receiving the Read (RD#) signal. Pull "Low" to initiate data read operation provided that CS# is "Low". Pull "High" to stop Read operation. For Serial peripheral interface, This pin must be connected to VSS.
5~12	$\mathrm{D7}\sim\mathrm{D0}$	These pins are 8-bit bi-directional data bus. They should be connected to the microprocessor's data bus. When serial interface mode is selected, D1 will be the serial data input and D0 will be the serial clock input.
1, 18, 22, 23, 24 31	N.C.	Reserved pins and should not be connected together.

Table1: Pin Description

6. ABSOLUTE MAXIMUM RATINGS

6.1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Notes
Supply Voltage	V _{DD}	-0.3	4.0	V	1,2
Driver Supply Voltage	V _{CC}	0	15.0	V	1,2
Operating Temperature	T _{OP}	-20	70	°C	
Storage Temperature	T _{STG}	-30	80	°C	

Table2: Absolute Maximum Ratings

Note 1: All above voltages are on the basis of "VSS = 0.0V".

Note 2: When this module is used beyond above absolute maximum ratings, permanent breakage of the module may occur. For normal operations, it is desirable to use this module under the conditions according to Section "Electrical Characteristics". If this module is used beyond these conditions, malfunctioning of the module will occur and the reliability of the module may deteriorate.

6.2 Regarding the Gradation

Although this module possesses the gradation function, respective gradation levels will vary depending on the production conditions etc. The temperature range where the gradation function can be guaranteed is -10 °C ~ 60 °C.

7. OPTICS & ELECTRICAL CHARACTERISTICS

Characteristics	Symbol	Conditions	Min	Тур	Max	Unit
Brightness	L _{br}	With polarizer	35	60		Cd/m ²
CIE (Blue)	Х	Without polarizer	0.12	0.16	0.20	
CIE (Diue)	Y	without polarizer	0.24	0.28	0.32	
CIE (Yellow)	Х	Without polarizer	0.43	0.47	0.51	
CIE (Tellow)	Y	without polarizer	0.46	0.50	0.54	
Dark Room Contrast	CR			>100		
View Angle	А	4	>160			degree

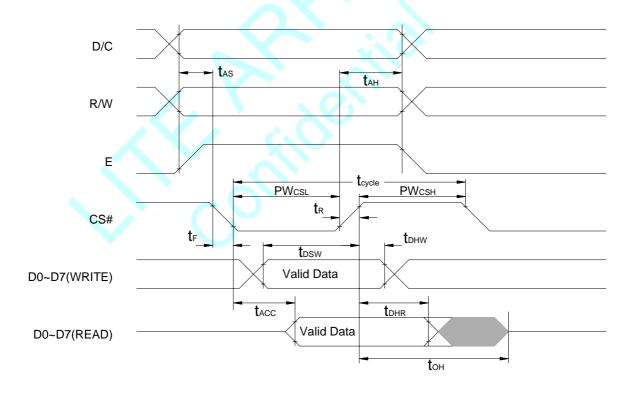
Table 3: Optics & electrical characteristics

Note: Optical measurement is taken at 1/64 duty, 100Hz Frame Rate, 0xFF Contrast setting.

8. ELECTRICAL CHARACTERISTICS

8.1 DC Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DD}	Supply Voltage for logic		2.6	2.8	3.5	V
V _{CC}	Operating Voltage for OLED		8	9	10	V
V _{IH}	High Level Input	<u> </u>	0.8*V _{DD}		V _{DD}	V
V _{IL}	Low Level Input	<u> </u>	0.0		0.2*V _{DD}	V
V _{OH}	High Level Output	- 2	0.9*V _{DD}		V _{DD}	V
V _{OL}	Low Level Output	-	0.0		0.1*V _{DD}	V
I _{DD}	Operating Current at V _{DD}	VDD = 2.8V, VCC = 9.0V, Frame rate = 100Hz, Contrast setting = 0xFF, 50% display area turn-on.		TBD	TBD	mA
עטי		VDD = 2.8V, VCC = 9.0V, Frame rate = 100Hz, Contrast setting = 0xFF, 100% display area turn-on.		TBD	TBD	mA
т	Operating Current at V	VDD = 2.8V, VCC = 9.0V, Frame rate = 100Hz, Contrast setting = 0xFF, 50% display area turn-on.		TBD	TBD	mA
I _{CC}	Operating Current at V _{CC}	VDD = 2.8V, VCC = 9.0V, Frame rate = 100Hz, Contrast setting = 0xFF, 100% display area turn-on.		TBD	TBD	mA


Table 4: DC characteristics

8.2 AC Characteristics

Symbol	Parameter	Min	Max	Unit
t _{cycle}	Clock cycle time	300		ns
t _{AS}	Address Setup Time	0		ns
t _{AH}	Address Hold Time	0		ns
t _{DSW}	Write Data Setup Time	40		ns
t _{DHW}	Write Data Hold Time	15		ns
t _{DHR}	Read Data Hold Time	20		ns
t _{OH}	Output Disable Time		70	ns
t _{ACC}	Access Time		140	ns
PW _{CSL}	Chip Select Low Pulse Width (read)	120		ns
r w _{csl}	Chip Select Low Pulse Width (write)	60		ns
PW _{CSH}	Chip Select High Pulse Width (read)	60		ns
I WYCSH	Chip Select High Pulse Width (write)	60		ns
t _R	Rise time		15	ns
$t_{\rm F}$	Fall time		15	ns

8.2.1 6800-Series MPU Parallel Interface Timing Characteristics

Symbol	Parameter	Min	Max	Unit
t _{cycle}	Clock cycle time	300		ns
t _{AS}	Address Setup Time	0		ns
t _{AH}	Address Hold Time	0		ns
t _{DSW}	Write Data Setup Time	40		ns
t _{DHW}	Write Data Hold Time	15		ns
t _{DHR}	Read Data Hold Time	20		ns
t _{OH}	Output Disable Time		70	ns
t _{ACC}	Access Time		140	ns
PW _{CSL}	Chip Select Low Pulse Width (read)	120		ns
	Chip Select Low Pulse Width (write)	60		ns
PW _{CSH}	Chip Select High Pulse Width (read)	60		ns
	Chip Select High Pulse Width (write)	60		ns
t _R	Rise time		15	ns
t _F	Fall time		15	ns

8.2.2 8080-Series MPU Parallel Interface Timing Characteristics

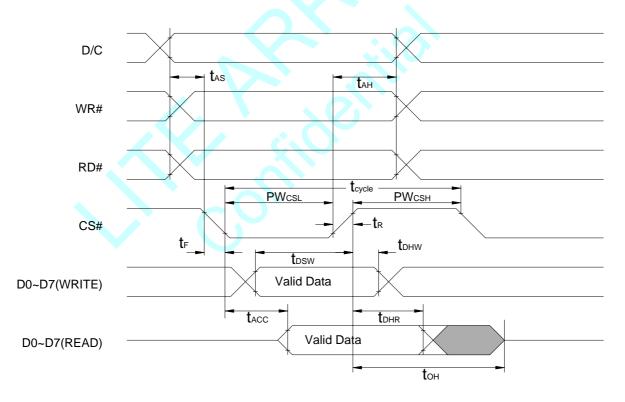


Figure 4: Timing diagram for 8080-series MPU parallel interface

Symbol	Parameter	Min	Max	Unit
t _{cycle}	Clock cycle time	200		ns
t _{AS}	Address Setup Time	150		ns
t _{AH}	Address Hold Time	150		ns
t _{CSS}	Chip Select Setup Time	120		ns
t _{CSH}	Chip Select Hold Time	60		ns
t _{DSW}	Write Data Setup Time	100		ns
t _{DHW}	Write Data Hold Time	100		ns
t _{CLKL}	Clock Low Time	100		ns
t _{CLKH}	Clock High Time	100		ns
t _R	Rise time	ł	15	ns
t _F	Fall time		15	ns

8.2.3 Serial Interface Timing Characteristics

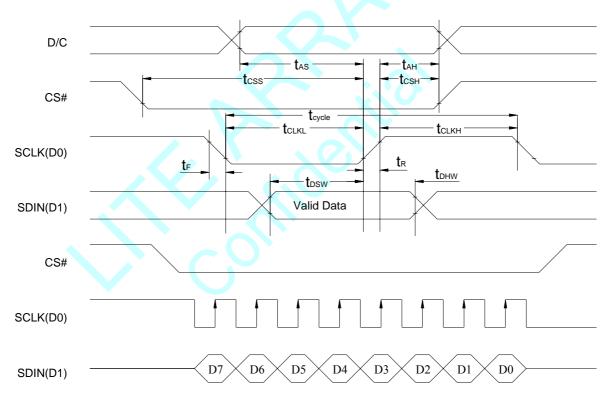


Figure 5: Timing diagram for serial interface

9. CONTROL AND DISPLAY COMMAND

9.1 Command table

(D/C = 0, R/W (WR#) = 0, E(RD#) = 1)

D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	00~0F	0	0	0	0	X ₃	X ₂	X ₁	X ₀	Set Lower Column Address	Set the lower nibble of the column address register using $X_3X_2X_1X_0$ as data bits. The initial display line register is reset to 0000b after POR.
0	10~1F	0	0	0	1	X ₃	X ₂	X ₁	X ₀	Set Higher Column Address	Set the higher nibble of the column address register using $X_3X_2X_1X_0$ as data bits. The initial display line register is reset to 0000b after POR.
0	26	0	0	1	0	0	1	1	0	Horizontal scroll setup	A[2:0] Set the number of column scroll per step
0	A[2:0]	*	*	*	*	*	A_2	A_1	A ₀		Valid value: 001b, 010b, 011b, 100b
0	B[2:0]	*	*	*	*	*	B_2	B_1	B_0		B[2:0] Define start page address
0	C[1:0]	*	*	*	*	*	*	C ₁	C ₀		C[1:0] Set time interval between each scroll step in terms of frame frequency
0	D[2:0]	*	*	*	*	*	D_2	D_1	D_0		
											00b – 12 frame
											01b – 64 frames
											10b – 128 frames
											11b – 256 frames
											D[2:0] Define end page address
											Set the value of D[2:0] larger or equal to B[2:0]
0	2F	0	0	1	0	1	1	1	1	Activate horizontal scroll	Start horizontal scrolling
0	2E	0	0	1	0	1	1	1	0	Deactivate horizontal scroll	Stop horizontal scrolling
0	40-7F	0	1	X ₅	X ₄	X ₃	X ₂	X ₁	X ₀	Set Display Start Line	Set display TAM display start line register from 0-63 using $X_8X_3X_2X_1X_0$.
											Display start line register is reset to 000000 during POR
0	81	1	0	0	0	0	0	0	1	Set Contrast Control	Double byte command to select 1 out of 256 contrast
0	A[7:0]	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Register	steps. Contrast increases as the value increases. (POR = 80h)
0	91	1	0	0	1	0	0	0	1	Set Look Up Table (LUT) for area colour	Set current drive pulse width of Bank 0, Colour A, B and C.
0	X[5:0]	*	*	X_5	X 4	X ₃	X ₂	X ₁	X ₀		Bank 0: X[5:0] = 0 63; for pulse width set to $1 \sim 64$ clocks
0	A[5:0]	*	*	A_5	A_4	A ₃	A_2	A_1	A_0		Colour A: A[5:0] same as above
0	B[5:0]	*	*	B_5	B_4	B ₃	B ₂	B_1	B_0		Colour B: B[5:0] same as above
0	C[5:0]	*	*	C_5	C ₄	C ₃	C ₂	C ₁	C ₀		Colour C: C[5:0] same as above
											Note: colour D pulse width is fixed at 64 clocks pulse .

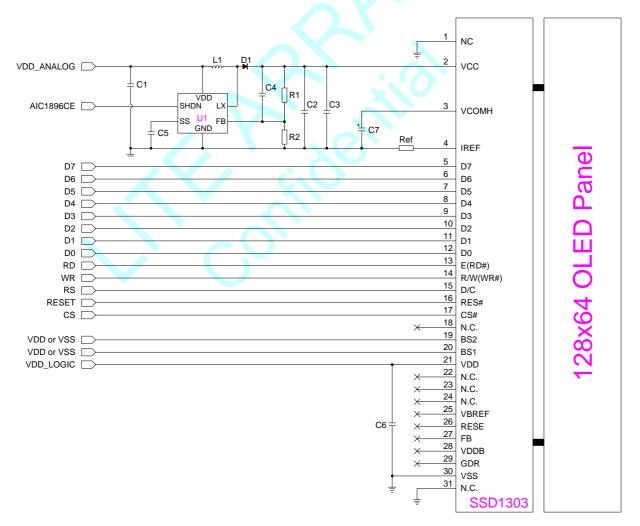
D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	92	1	0	0	1	0	0	1	0	Set bank colour of for bank 1-16 (Page 0)	A[1:0] : 00, 01, 10, or 11 for Colour = A, B, C or D of bank 1
0	A[7:0]	A ₇	A_6	A_5	A ₄	A ₃	A ₂	A ₁	A ₀	Dalik 1-10 (Fage 0)	A[3:2] : 00, 01, 10, or 11 for Colour = A, B, C or D of bank 2
0	B[7:0]	B ₇	B_6	B_5	B_4	B3	B ₂	B ₁	B ₀		:
0	C[7:0]	C_7	C_6	C_5	C_4	C₃	C_2	C_1	C_{0}		:
0	D[7:0]	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		D[7:6]: 00, 01, 10, or 11 for Colour = A, B, C or D of bank 16
0	93	1	0	0	1	0	0	1	1	Set bank colour of for bank 17-32 (Page 1)	A[1:0] : 00, 01, 10, or 11 for Colour = A, B, C or D of bank 17
0	A[7:0]	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[3:2] : 00, 01, 10, or 11 for Colour = A, B, C or D of bank 18
0	B[7:0]	B ₇	B ₆	B ₅	B4	B₃	B ₂	B ₁	B ₀		:
0	C[7:0]	C_7	C_6	C_5	C_4	C ₃	C_2	C_1	C_{0}		:
0	D[7:0]	D7	D ₆	D5	D4	D3	D ₂	D ₁	Do		D[7:6]: 00, 01, 10, or 11 for Colour = A, B, C or D of bank 32
0	A0~ A1	1	0	1	0	0	0	0	X ₀	Set Segment Re-map	X ₀ =0: column address 0 is mapped to SEG0 (POR)
											$X_0=1$: column address 131 is mapped to SEG0
0	A4~A5	1	0	1	0	0	1	0	X ₀	Set Entire Display	X₀=0: normal display (POR)
										ON/OFF	X₀=1: entire display ON
0	A6~A7	1	0	1	0	0	1	1	X ₀	Set Normal/Inverse Display	X₀=0: normal display (POR) X₀=1: inverse display
0	A8	1	0	1	0	1	0	0	0	Set Multiplex Ratio	The next command, A[5:0] determines multiplex ratio
0	A[5:0]	*	*	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		N from 16MUX-64MUX, POR= 64MUX
0	AA	1	0	1	0	1	0	1	0	NOP	Reserved, do not use
0	AB	1	0	1	0	1	0	1	1	NOP	Reserved, do not use
0 0	AD	1 1	0 0	1 0	0 0	1 1	1 0	0 1	1 X ₀	Set DC-DC on/off	X_0 : 1 DC-DC will be turned on when display on (POR)
0	AE~AF	1	0	1	0	1	1	1	X ₀	Set Display ON/OFF	0 DC-DC is disable X ₀ =0: turns OFF OLED panel (POR)
Ŭ			Ŭ		Ŭ	'			Λ0	oer Display on of t	X_0 =1: turns ON OLED panel
0	B0~BF	1	0	1	1	X ₃	X ₂	X ₁	X ₀	Set Page Address	Set GDDRAM Page Address (0~7) for read/write using $X_3X_2X_1X_0$
0	C0/C8	1	1	0	0	X ₃	*	*	*	Set COM Output Scan Direction	X_3 =0: normal mode (POR) Scan from COM 0 to COM
										Direction	[N –1] X₃=1: remapped mode. Scan from COM [N-1] to COM0
						-				_	Where N is the Multiplex ratio.
0	D0-D1	1	1	0	1	0	0	0	Xo	Reserved	Reserved, do not use

D/C	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	D3	1	1	0	1	0	0	1	1	Set Display Offset	Set vertical scroll by COM from 0-63.
0	A[5:0]	*	*	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		The value is reset to 00H after POR.
0	D5	1	1	0	1	0	1	0	1	Set Display Clock Divide Ratio/Oscillator Frequency	The lower nibble of the next command define the divide ratio of the display clocks (DCLK):
0	A[7:0]	A ₇	A_6	A_5	A ₄	A ₃	A ₂	A ₁	A ₀		Divide ratio= A[3:0] + 1, POR is 0000b (divide ratio = 1)
											The higher nibble of the next command sets the Oscillator Frequency. Oscillator Frequency increases with the value of
											A[7:4] and vice versa.
0	D8	1	1	0	1	1	0	0	0	Set area colour mode	X₅X₄= 00 (POR) : mono mode
0		0	0	X_5	X 4	0	X ₂	0	X ₀	on/off & low power display mode	X_5X_4 = 11 Area Colour enable X_2 =0 and X_0 =0: Normal (POR) power mode X_2 =1 and X_0 =1: Set low power save mode
0	D9	1	1	0	1	1	0	0	1	Set Pre-charge period	A[3:0] Phase 1 period of up to 15 dclk clocks [POR=2h]
0	A[7:0]	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:4] Phase 2 period of up to 15 dclk clocks [POR=2h]
0	DA	1	1	0	1	1	0	1	0		X₄=0, Sequential COM pin configuration
0		0	0	0	X 4	0	0	1	0	configuration	(i.e. COM31, 30, 290 ; SEG0-132; COM31,3262,63)
											X_4 =1(POR), Alternative COM pin configuration
											(i.e. COM62,60,58,2,0; SEG0-132; COM1,3,561,63)
0	DB	1	1	0	1	1	0	1	1	Set VCOM Deselect Level	A[6:0] 0000000 low VCOM deselect level (~ 0.43 Vref)
0	A[6:0]	*	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		0110101 noraml VCOM deselect level (~ 0.77*Vref (POR))
											1111111 high VCOM deselect level (equal Vref)
0	E2	1	1	1	0	0	0	1	0	Reserved	Reserved
0	E3	1	1	1	0	0	0	1	1	NOP	Command for No Operation
0	F*	1	1	1	1	*	*	*	*	Reserved	Reserved, do not use

Note: Remark "*" stands for "Don't Care"

Table 5: Command Table

9.2 Read command table


(D/C = 0, R/W(WR#) = 1, E(RD#) = 1 for 6800 or E(RD#) = 0 for 8080)

Bit Pattern	Command	Description
$D_7 D_6 D_5 D_4 D_3 D_2 D_1 D_0$	Status Register Read *	$\begin{array}{cccc} D_7: & ``1" \mbox{ for Command lock} \\ D_6: & ``1" \mbox{ for display OFF / ``0" for display ON} \\ D_5: & Reserve \\ D_4: & Reserve \\ D_3: & Reserve \\ D_2: & Reserve \\ D_1: & Reserve \\ D_0: & Reserve \\ \end{array}$

Note: Patterns other than that given in Command Table are prohibited to enter to the chip as a command; otherwise, unexpected result will occur.

Table 6: Read Command Table

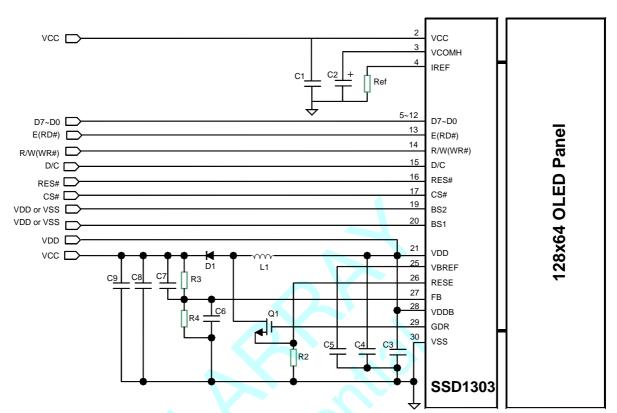
10. REFERENCE APPLICATION CIRCUIT

Figure 6: Reference Application Circuit (using external DC/DC voltage converter)

Notes:

• MPU interface: 8-bit 6800-series/8080-series parallel interface or Serial interface. It is pin selectable by BS1 and BS2.

	6800-series parallel interface	8080-series parallel interface	Serial interface
BS1	0	1	0
BS2	1	1	0


- U1: AIC1896 DC/DC Converter
- AIC1896CE can be connected to MCU or VDD for alternative solution.
- VCC = 1.23 x (R1 + R2)/R2

Below table is the component list for the application circuit.

Item	Description
SSD1303	OLED Driver IC (Solomon)
U1	DC/DC Converter – AIC1896 Step-up(AIC)
L1	Inductor – 15µH, 2A
D1	Schottky Diode – 20V, 1A
R1	Resistor – $820k\Omega$, 1%, 1/4W
R2	Resistor – 130k Ω , 1%, 1/4W
Ref	Resistor – 910k Ω , 1% (see remark)
C1	Capacitor – 10µF, 6.3V, Low ESR
C2	Capacitor – 10µF, 16V, Low ESR
C3	Capacitor – 1µF, 16V, Low ESR
C4	Capacitor – 15nF, 16V, Low ESR
C5	Capacitor – 0.033µF, 6.3V, Low ESR
C6	Capacitor – 4.7µF, 6.3V, Low ESR
C7	Tantalum Capacitor – 1.0µF~2.2µF, 16V

Table 7: Component list for the external DC-DC voltage converter application circuit

Figure 7: Reference Application Circuit (using internal DC/DC voltage converter)

Notes:

• MPU interface: 8-bit 6800-series/8080-series parallel interface or Serial interface. It is pin selectable by BS1 and BS2.

	6800-series parallel interface	8080-series parallel interface	Serial interface
BS1	0	1	0
BS2	1	1	0

- L1, D1, Q1 and C4 should be grouped closed together on PCB layout
- R2, R3, C5 and C6 should be grouped closed together on PCB layout
- The VCC output voltage level is adjusted by R2 and R3, the formula is: VCC = 1.2 x (R2+R3)/R3

The value of (R2+R3) should be between 500k to 1M ohm.

Item	Description
SSD1303	OLED Driver IC (Solomon)
Q1	MOSFET - N-FET with low R _{DS} (on) and low Vth voltage, eg,
	MGSF1N02Lt1 (On Semi)
L1	Inductor – 10µH, 1A
D1	Schottky diode – 1A, 25V, eg, 1N5822, BAT54 (Philips Semi)
Ref	Resistor – 1%, 1/2W (see remark)
R1	Resistor – 1.2Ω, 1%, 1/2W
R2, R3	Resistor – 1%, 1/10W
C1	Capacitor – 4.7µF, 16V
C2	Tantalum Capacitor – 1.0µF~2.2µF, 16V
C3	Capacitor $-0.1 \sim 1 \mu F$, 16V
C4	Capacitor – $1 \sim 10 \mu F$, 16V
C5	Capacitor – 1µF, 16V
C6	Capacitor – 10nF, 16V
C7	Capacitor – 15nF, 16V
C8	Capacitor – 6.8µF, 25V, Low ESR
C9	Capacitor – 1µF, 16V

Below table is the component list for the application circuit.

Table 8: Component list for the internal DC-DC voltage converter application circuit

Remark:

Ref = (Voltage at IREF pin – VSS)/ I_{REF} ; Voltage at I_{REF} pin = VCC - VDD

For example, VDD = 3.0V, VCC = 12V, $I_{REF} = 10\mu A$

Ref = $(12-3)/10^{-6}$ = about 910k Ω

11. QUALITY SPECIFICATIONS

11.1 Inspection Method:

11.1.1 Applicable Standard

MIL-STD-105E, Level II, Normal Inspection, single sampling

11.1.2 AQL

Partition	AQL	Definition
Major		Defects may lead to the failure of display function or the failure of passing the reliability criteria.
Minor	1.0	Defects do not affect all of the display functions, and have no impact to the reliability.

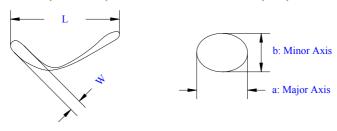
11.1.3 Inspection Condition

Test and measurement were conducted under the following conditions:

Temperature: 23±5℃

Humidity: 55±15%RH

Distance between the panel and eyes of the inspector: ≥30cm


11.2 Inspection Criterion

Check Item	Classification	C	riteria	
Non operation/display)		
Flicker	0.5			
Miss line or pixel	major	Not Allowable		
Wrong display				
Cross talk *	0			
		$W \le 0.05$	Ignore	
Scratches, fiber **	minor	$W \le 0.1,L \le 2$	$n \leq 3$	
		2 < L	n = 0	
		$\Phi \leq 0.1$	Ignore	
Dirt, Black spot, white spot,		0.1 < Ф≤0.2	$n \leq 3$	
Greasy dirt, Foreign material, Dent, Bubbles **		0.2 < Φ≤0.25	$n \leq 1$	
,		$0.25 < \Phi$	$n \leq 0$	
Fingerprint, Flow mark	minor	Not	allowable	

* In displays which manifests itself has the other shadowing, ghosting or streaking.

** Distance between any 2 defects should over 10mm

 $\Phi = (a+b)/2$

Visual check in non-active area

Check Item	Classification	Criteria
Panel General Chipping	Major	X \leq 1/6 Panel Length Y \leq 1 Z \leq T
Panel Crack	minor	Any crack is not allowable
Terminal cable: twist, Scar, Split, Scratch	Minor	Not Allowable

11.3 Reliability

11.3.1 Contents of Reliability Tests

Item	Condition	Criteria
High Temperature Operation	70°C, 240 hrs	
Low Temperature Operation	-20°C, 240 hrs	
High Temperature Storage	80°C, 240 hrs	No such changes as
Low Temperature Storage	-30°C, 240 hrs	to obstruct image
High Temperature /Humidity Storage	60°C, 90%RH, 240 hrs	& function
Thermal Shock	$-30^{\circ}C \iff 80^{\circ}C, 10 \text{ cycles}$	
	30 mins dwell	

* The samples used for above tests do not include polarizer.

* No moisture condensation is observed during tests.

11.3.2 Lifetime

End of lifetime is specified as 50% of initial brightness.

An average operating lifetime of more than 10,000 hrs at room temperature is approached by

240 hrs @ 70°C operating.

11.3.3 Failure Check Standard

After the completion of the described reliability test, the samples were left room temperature for

2 hrs prior to conducting the failure teat at $23\pm5^{\circ}$ C; $55\pm15\%$ RH.

Lite Array reserves the right to make changes without further notice to any products described herein. Unless specifically agreed to by Lite Array in writing in a particular instance, Lite Array makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose, nor does Lite Array assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Unless specifically agreed to by Lite Array in writing in a particular instance, Lite Array does not convey any license under its patent rights nor the rights of others. Lite Array products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Lite Array unintended or unauthorized application, Buyer shall indemnify and hold Lite Array and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Lite Array was negligent regarding the design or manufacture of the part. The purchase of a Lite Array product by a buyer shall, for such product, be deemed an acceptance by the buyer of the terms set forth above.