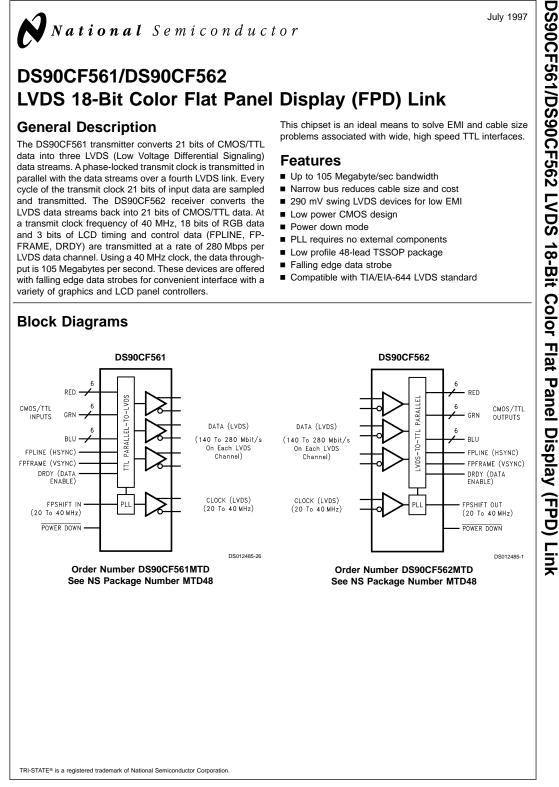
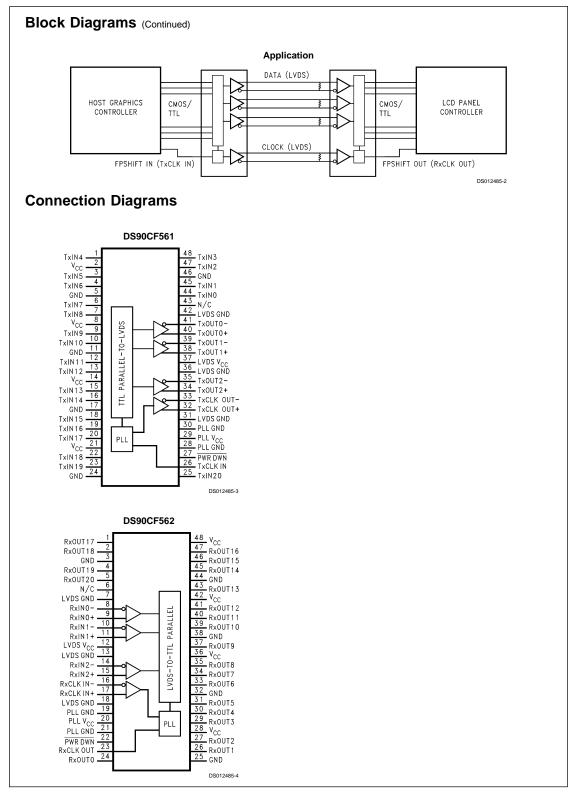
National Semiconductor

DS90CF561/DS90CF562 LVDS 18-Bit Color Flat Panel Display (FPD) Link

General Description


The DS90CF561 transmitter converts 21 bits of CMOS/TTL data into three LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data streams over a fourth LVDS link. Every cycle of the transmit clock 21 bits of input data are sampled and transmitted. The DS90CF562 receiver converts the LVDS data streams back into 21 bits of CMOS/TTL data. At a transmit clock frequency of 40 MHz, 18 bits of RGB data and 3 bits of LCD timing and control data (FPLINE, FP-FRAME, DRDY) are transmitted at a rate of 280 Mbps per LVDS data channel. Using a 40 MHz clock, the data throughput is 105 Megabytes per second. These devices are offered with falling edge data strobes for convenient interface with a variety of graphics and LCD panel controllers.

This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.


July 1997

Features

- Up to 105 Megabyte/sec bandwidth
- Narrow bus reduces cable size and cost
- 290 mV swing LVDS devices for low EMI
- Low power CMOS design
- Power down mode
- PLL requires no external components
- Low profile 48-lead TSSOP package
- Falling edge data strobe
- Compatible with TIA/EIA-644 LVDS standard

© 1998 National Semiconductor Corporation DS012485

2

Absolute Maximum Ratings (Note 1)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.3V to +6V
CMOS/TTL Input Voltage	-0.3V to (V _{CC} + 0.3V)
CMOS/TTL Ouput Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Receiver Input Voltage	–0.3V to (V _{CC} + 0.3V)
LVDS Driver Output Voltage	–0.3V to (V _{CC} + 0.3V)
LVDS Output	
Short Circuit Duration	continuous
Junction Temperature	+150°C
Storage Temperature Range	–65°C to +150°C
Lead Temperature	
(Soldering, 4 sec.)	+260°C
Maximum Power Dissipation @ +25	°C
MTD48 (TSSOP) Package:	
Maximum Power Dissipation @ +25	

 DS90CF561
 1.98W

 DS90CF562
 1.89W

 Package Derating:
 DS90CF561

 DS90CF561
 16 mW/°C above +25°C

 DS90CF562
 15 mW/°C above +25°C

 This device does not meet 2000V ESD rating (Note 4).

Recommended Operating Conditions

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	4.5	5.0	5.5	V
Operating Free Air				
Temperature (T _A)	-10	+25	+70	°C
Receiver Input Range	0		2.4	V
Supply Noise Voltage (V _{CC})			100	mV _{P-P}

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified Parameter Conditions Min Units Symbol Тур Max **CMOS/TTL DC SPECIFICATIONS** High Level Input Voltage 2.0 V_{cc} V VIH VIL Low Level Input Voltage GND 0.8 ٧ V_{OH} $I_{OH} = -0.4 \text{ mA}$ High Level Output Voltage 3.8 4.9 V $I_{OL} = 2 \text{ mA}$ Low Level Output Voltage 0.1 0.3 V VOL $I_{CL} = -18 \text{ mA}$ Input Clamp Voltage -0.79 -1.5 V V_{CL} $V_{IN} = V_{CC}$, GND, 2.5V or 0.4V Input Current ±5.1 ±10 μΑ I_{IN} Output Short Circuit Current $V_{OUT} = 0V$ -120 mΑ los LVDS DRIVER DC SPECIFICATIONS V_{OD} Differential Output Voltage $R_L = 100\Omega$ 250 290 450 m٧ Change in V_{OD} between ΔV_{OD} 35 m٧ Complimentary Output States Common Mode Voltage 1.25 1.375 V V_{CM} 1.1 mν Change in $V_{\rm CM}$ between ΔV_{CM} 35 Complimentary Output States V_{он} High Level Output Voltage 1.3 1.6 ٧ VOL Low Level Output Voltage 0.9 1.01 V Output Short Circuit Current $V_{OUT} = 0V, R_L = 100\Omega$ -2.9 -5 mΑ los Output TRI-STATE® Current $\overline{\text{Power Down}}$ = 0V, V_{OUT} = 0V or V_{CC} ±1 ±10 μΑ loz LVDS RECEIVER DC SPECIFICATIONS Differential Input High Threshold +100 V_{TH} $V_{CM} = +1.2V$ mV V_{TL} Differential Input Low Threshold -100 m٧ $I_{\rm IN}$ Input Current $V_{IN} = +2.4V$ $V_{CC} = 5.5V$ ±10 μA $V_{IN} = 0V$ ±10 μA TRANSMITTER SUPPLY CURRENT $R_{L} = 100\Omega, C_{L} = 5 \text{ pF},$ Transmitter Supply Current, f = 32.5 MHz 34 51 I_{CCTW} mΑ Worst Case Worst Case Pattern (Figure 1, Figure 3) f = 37.5 MHz 36 53 mΑ Transmitter Supply Current, $R_1 = 100\Omega, C_1 = 5 \text{ pF},$ f = 32.5 MHz 27 47 mΑ I_{CCTG} 16 Grayscale Grayscale Pattern (Figure 2, Figure 3) f = 37.5 MHz 28 48 mΑ

Elec	trical Characteristics	(Continued)					
Over ree	commended operating supply and	temperature ranges unless o	therwise specified				
Symbol	Parameter	Conditio	ons	Min	Тур	Max	Units
TRANSM	ITTER SUPPLY CURRENT						
I _{CCTZ}	Transmitter Supply Current, Power Down	Power Down = Low			1	25	μA
RECEIVE	R SUPPLY CURRENT						
I _{CCRW}	Receiver Supply Current, Worst Case	$C_{L} = 8 \text{ pF},$ Worst Case Pattern	f = 32.5 MHz		55	75	mA
		(Figure 1, Figure 4)	f = 37.5 MHz		60	80	mA
I _{CCRG} Receiver Supply Current, 16 Grayscale		C _L = 8 pF, 16 Grayscale Pattern	f = 32.5 MHz		35	55	mA
		(Figure 2, Figure 4)	f = 37.5 MHz		37	58	mA
I _{CCRZ}	Receiver Supply Current, Power Down	Power Down = Low			1	10	μA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Typical values are given for V_{CC} = 5.0V and T_A = +25°C.

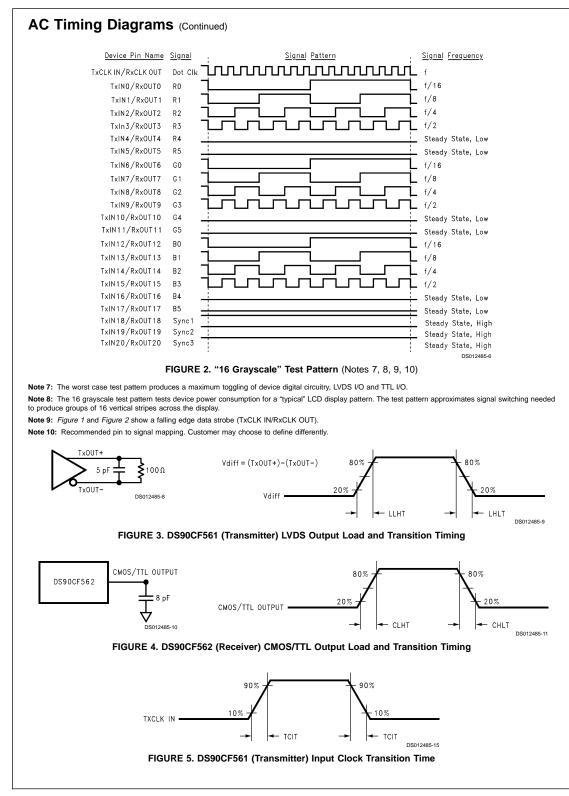
Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and ΔV_{OD}).

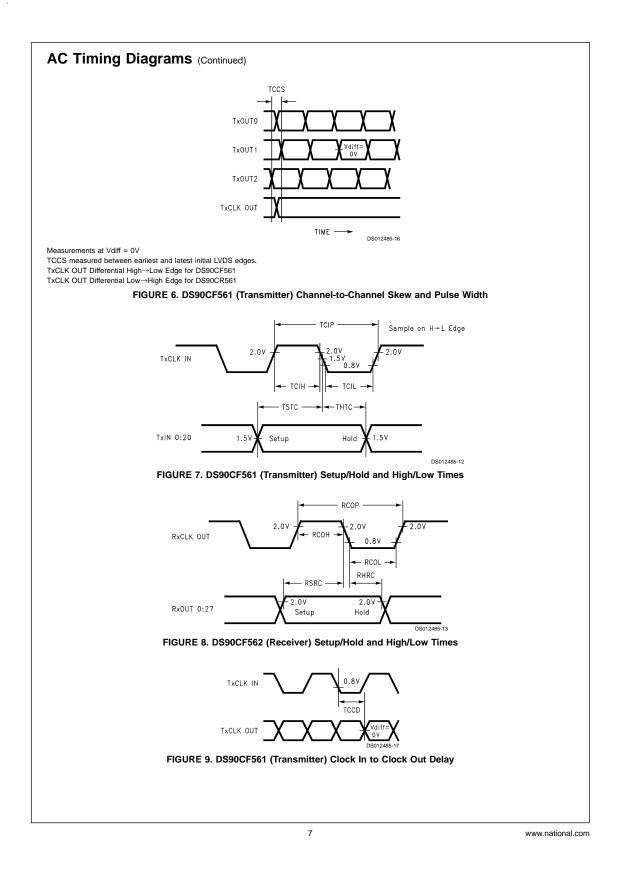
Note 4: ESD Rating:

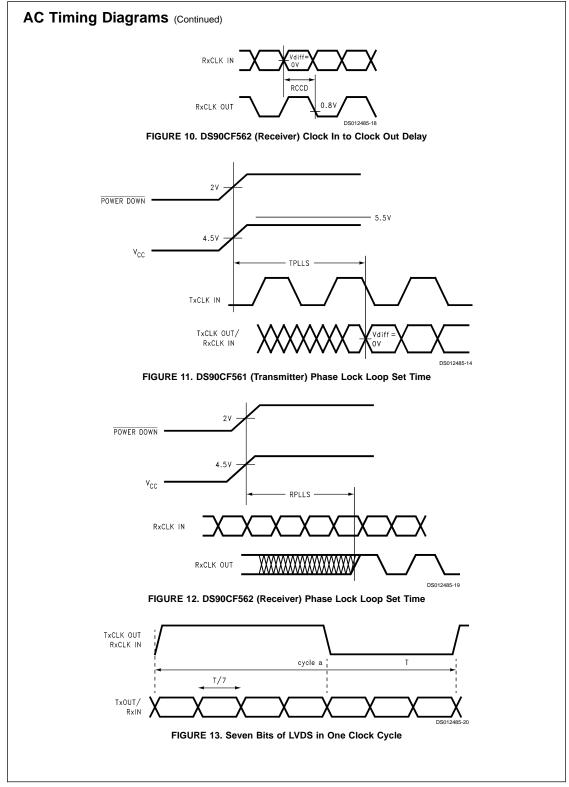
•

HBM (1.5 kΩ, 100 pF)

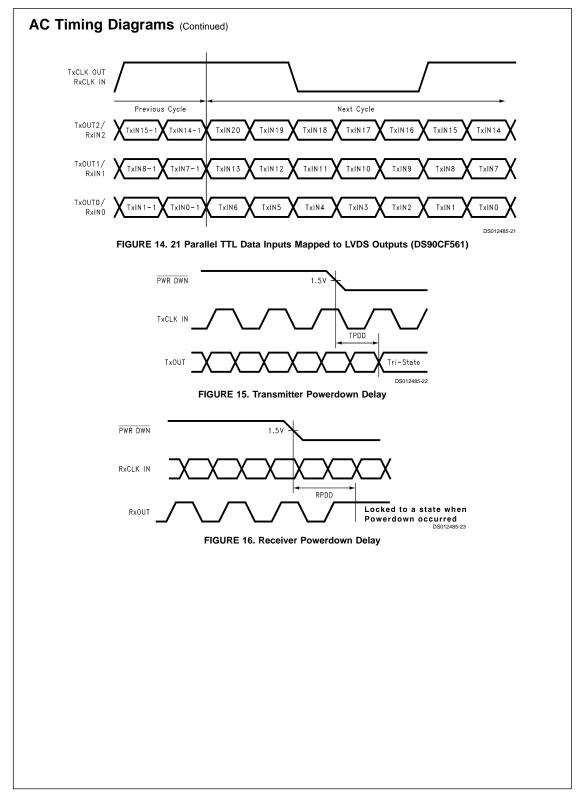
PLL V $_{CC} \ge 1000V$


All other pins $\ge 2000V$ EIAJ (0Ω, 200 pF) ≥ 150V

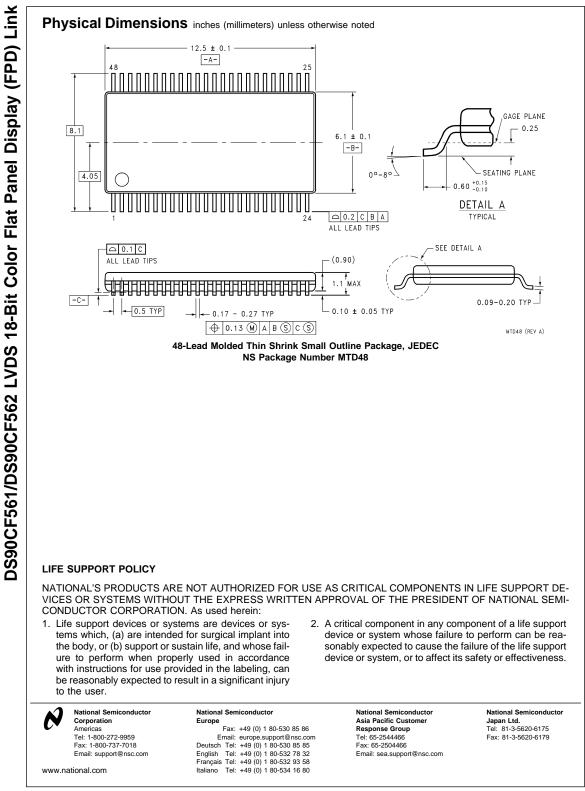

Transmitter Switching Characteristics Over recommended operating supply and temperature ranges unless otherwise specified


Symbol	Parameter	Min	Тур	Max	Units	
LLHT	LVDS Low-to-High Transition Time (Figure 3)		0.75	1.5	ns	
LHLT	LVDS High-to-Low Transition Time (Figure 3)			0.75	1.5	ns
TCIT	TxCLK IN Transition Time (Figure 5)				8	ns
TCCS	TxOUT Channel-to-Channel Skew (Note 5) (Figure 6)				350	ps
TPPos0	Transmitter Output Pulse Position for Bit 0 (Figure 17)	f = 20 MHz	-200	150	350	ps
TPPos1	Transmitter Output Pulse Position for Bit 1		6.3	7.2	7.5	ns
TPPos2	Transmitter Output Pulse Position for Bit 2		12.8	13.6	14.6	ns
TPPos3	Transmitter Output Pulse Position for Bit 3		20	20.8	21.5	ns
TPPos4	Transmitter Output Pulse Position for Bit 4		27.2	28	28.5	ns
TPPos5	Transmitter Output Pulse Position for Bit 5	34.5	35.2	35.6	ns	
TPPos6	Transmitter Output Pulse Position for Bit 6	42.2	42.6	42.9	ns	
TPPos0	Transmitter Output Pulse Position for Bit 0 (Figure 16)	f = 40 MHz	-100	100	300	ps
TPPos1	Transmitter Output Pulse Position for Bit 1		2.9	3.3	3.9	ns
TPPos2	Transmitter Output Pulse Position for Bit 2		6.1	6.6	7.1	ns
TPPos3	Transmitter Output Pulse Position for Bit 3		9.7	10.2	10.7	ns
TPPos4	Transmitter Output Pulse Position for Bit 4		13	13.5	14.1	ns
TPPos5	Transmitter Output Pulse Position for Bit 5		17	17.4	17.8	ns
TPPos6	Transmitter Output Pulse Position for Bit 6		20.3	20.8	21.4	ns
TCIP	TxCLK IN Period (Figure 7)	T	25	Т	50	ns
TCIH	TxCLK IN High Time (Figure 7)		0.35T	0.5T	0.65T	ns
TCIL	TxCLK IN Low Time (Figure 7)		0.35T	0.5T	0.65T	ns
TSTC	TxIN Setup to TxCLK IN (Figure 7)	f = 20 MHz	14			ns
		f = 40 MHz	8			ns
THTC	TxIN Hold to TxCLK IN (Figure 7)	·	2.5	2		ns

Over rec	commended operating supply and temperature ranges unless otherwise specifie	a			
Symbol	Parameter	Min	Тур	Max	Units
TCCD	TxCLK IN to TxCLK OUT Delay @ 25°C,	5		9.7	ns
	$V_{CC} = 5.0V (Figure 9)$				
TPLLS	Transmitter Phase Lock Loop Set (Figure 11)			10	ms
TPDD	Transmitter Powerdown Delay (Figure 15)			100	ns
	eiver Switching Characteristics commended operating supply and temperature ranges unless otherwise specifie	d			
Symbol	Parameter	Min	Тур	Max	Units
CLHT	CMOS/TTL Low-to-High Transition Time (Figure 4)		3.5	6.5	ns
CHLT	CMOS/TTL High-to-Low Transition Time (Figure 4)		2.7	6.5	ns
RCOP	RxCLK OUT Period (Figure 8)	25	Т	50	ns
RSKM		0 MHz 1.1			ns
		0 MHz 700			ps
RCOH		0 MHz 21.5			ns
		0 MHz 10.5			ns
RCOL		0 MHz 19			ns
		0 MHz 6			ns
RSRC		0 MHz 14			ns
		0 MHz 4.5			ns
RHRC		0 MHz 16			ns
RCCD	RxCLK IN to RxCLK OUT Delay @ 25°C,	0 MHz 6.5 7.6		11.9	ns ns
ROOD	$V_{\rm CC} = 5.0V$ (Figure 10)	7.0		11.5	113
RPLLS	Receiver Phase Lock Loop Set (<i>Figure 12</i>)			10	ms
RPDD	Receiver Powerdown Delay (<i>Figure 16</i>)			1	μs
and the s RSKM ≥ o	Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin ta ietup and hold time (internal data sampling window), allowing LVDS cable skew dependent on type/ler cable skew (type, length) + source clock jitter (cycle to cycle)				(ICCS)
	ODD TxIN/RxOUT				
	EVEN TXIN/RXOUT				
	FIGURE 1. "Worst Case" Test Pattern		DS	8012485-5	


. .

8



Pin Name	I/O	No.	Description
TxIN	1	21	TTL level input. This includes: 6 Red, 6 Green, 6 Blue, and 3 control lines (FPLINE, FPFRAME, DRDY). (Also referred to as HSYNC, VSYNC and DATA ENABLE.)
TxOUT+	0	3	Positive LVDS differential data output
TxOUT–	0	3	Negative LVDS differential data output
FPSHIFT IN	I	1	TTL level clock input. The falling edge acts as data strobe.
TxCLK OUT+	0	1	Positive LVDS differential clock output
TxCLK OUT-	0	1	Negative LVDS differential clock output
PWR DOWN	I	1	TTL level input. Assertion (low input) TRI-STATES the outputs, ensuring low current at power down.
V _{cc}	I	4	Power supply pins for TTL inputs
GND	I	5	Ground pins for TTL inputs
PLL V _{CC}	Ι	1	Power supply pin for PLL
PLL GND	Ι	2	Ground pins for PLL
LVDS V _{CC}	I	1	Power supply pin for LVDS outputs
LVDS GND	1	3	Ground pins for LVDS outputs

DS90CF562 Pin Description—FPD Link Receiver

Pin Name	I/O	No.	Description
RxIN+	Ι	3	Positive LVDS differential data inputs
RxIN-	I	3	Negative LVDS differential data inputs
RxOUT	0	21	TTL level data outputs. This includes: 6 Red, 6 Green, 6 Blue, and 3 control lines (FPLINE, FPFRAME, DRDY). (Also referred to as HSYNC, VSYNC and DATA ENABLE.)
RxCLK IN+	Ι	1	Positive LVDS differential clock input
RxCLK IN-	Ι	1	Negative LVDS differential clock input
FPSHIFT OUT	0	1	TTL level clock output. The falling edge acts as data strobe.
PWR DOWN	I	1	TTL level input. Assertion (low input) maintains the receiver outputs in the previous state
V _{cc}	Ι	4	Power supply pins for TTL outputs
GND	Ι	5	Ground pins for TTL outputs
PLL V _{CC}	Ι	1	Power supply for PLL
PLL GND	Ι	2	Ground pin for PLL
LVDS V _{CC}	Ι	1	Power supply pin for LVDS inputs
LVDS GND	1	3	Ground pins for LVDS inputs

