ABOV SEMICONDUCTOR Co., Ltd. 8-BIT MICROCONTROLLERS

MC96F6432

User's Manual (Ver. 1.2)

REVISION HISTORY

VERSION 0.0 (January 14, 2011)

VERSION 1.0 (June 27, 2011)

Change 'Typ/Max' to "LVR/LVI level" in LVR/LVI electrical characteristics.

Change '600/1200/2000 k Ω (Min/Typ/Max)' to "RX1" in DC electrical characteristics.

Change '3/6/9 kHz (Min/Typ/Max)' to "f_{WDTRC}" in INTERNAL WATCH-DOG RC OSCILLATION characteristics.

Remove WDTRC Current Max value at INTERNAL WATCH-DOG RC OSCILLATION characteristics.

Add '1.0 µA (Typ)' to "I_{WDTRC}" in INTERNAL WATCH-DOG RC OSCILLATION characteristics.

Add NOTE at 'T4CK[3:0] bits description'.

Change 'cleared by software(S/W)' in TIMER 3/4 BIOCK DIAGRAM.

Deleted AN15 Function in 12-bit A/D converter.

Added VDD18 Function in 12-bit A/D converter

Change '2500/5000/10000 k Ω (Min/Typ/Max)' to "RX2" in DC electrical characteristics.

Change '8.0/12.0 uA (Typ/Max) to "Current consumption(one of two)" in LVR/LVI characteristics.

Change '10.0/15.0 uA (Typ/Max) to "Current consumption(both)" in LVR/LVI characteristics.

Change '±3 (Max)' to "ILE" in ADC characteristics.

EXTRF/LVRF initial value changed '0' to 'unknown'.

Add NOTE 3 at LVRF description.

VERSION 1.1 (July 14, 2011)

Added AN15 Function in 12-bit A/D converter.

Deleted VDD18 Function in 12-bit A/D converter

Change '2/5/10 kHz (Min/Typ/Max)' to "f_{WDTRC}" in INTERNAL WATCH-DOG RC OSCILLATION characteristics.

Change temperature condition of HIGH FREQUENCY INTERNAL RC OSCILLATOR characteristics.

VERSION 1.2 (July 20, 2011) This book

The MC96F6232M device name is changed 'MC96F6232M' to 'MC96F6332M'.

Version 1.2 Published by FAE Team ©2011 ABOV Semiconductor Co.,Ltd. All rights reserved.

Additional information of this manual may be served by ABOV Semiconductor offices in Korea or Distributors.

ABOV Semiconductor reserves the right to make changes to any information here in at any time without notice.

The information, diagrams and other data in this manual are correct and reliable; however, ABOV Semiconductor is in no way responsible for any violations of patents or other rights of the third party generated by the use of this manual.

Table of Contents

1.	Overview	. 11
	1.1 Description	
	1.2 Features	. 12
	1.3 Ordering Information	. 13
	1.4 Development Tools	. 14
2.	Block Diagram	. 16
3.	Pin Assignment	. 17
4.	Package Diagram	. 19
5.	Pin Description	. 22
6.	Port Structures	. 27
	6.1 General Purpose I/O Port	. 27
	6.2 External Interrupt I/O Port	. 28
7.	Electrical Characteristics	
	7.1 Absolute Maximum Ratings	. 29
	7.2 Recommended Operating Conditions	. 29
	7.3 A/D Converter Characteristics	. 30
	7.4 Power-On Reset Characteristics	. 30
	7.5 Low Voltage Reset and Low Voltage Indicator Characteristics	. 31
	7.6 High Internal RC Oscillator Characteristics	. 32
	7.7 Internal Watch-Dog Timer RC Oscillator Characteristics	. 32
	7.8 LCD Voltage Characteristics	. 33
	7.9 DC Characteristics	. 34
	7.10 AC Characteristics	. 36
	7.11 SPI0/1/2 Characteristics	. 37
	7.12 UART0/1 Characteristics	. 38
	7.13 I2C0/1 Characteristics	. 39
	7.14 Data Retention Voltage in Stop Mode	. 40
	7.15 Internal Flash Rom Characteristics	. 41
	7.16 Input/Output Capacitance	. 41
	7.17 Main Clock Oscillator Characteristics	. 42
	7.18 Sub Clock Oscillator Characteristics	. 43
	7.19 Main Oscillation Stabilization Characteristics	. 44
	7.20 Sub Oscillation Characteristics	. 44
	7.21 Operating Voltage Range	. 45
	7.22 Recommended Circuit and Layout	
	7.23 Typical Characteristics	. 47

8. Memory	
8.1 Program Memory	
8.2 Data Memory	
8.3 XRAM Memory	54
8.4 SFR Map	
). I/O Ports	
9.1 I/O Ports	64
9.2 Port Register	
9.3 P0 Port	
9.4 P1 Port	
9.5 P2 Port	
9.6 P3 Port	71
9.7 P4 Port	
9.8 P5 Port	
9.9 Port Function	74
0. Interrupt Controller	
10.1 Overview	
10.2 External Interrupt	
10.3 Block Diagram	
10.4 Interrupt Vector Table	
10.5 Interrupt Sequence	
10.6 Effective Timing after Controlling Interrupt Bit	
10.7 Multi Interrupt	
10.8 Interrupt Enable Accept Timing	
10.9 Interrupt Service Routine Address	
10.10 Saving/Restore General-Purpose Registers	
10.10 Saving Rescore General-1 upose Registers	
10.12 Interrupt Register Overview	
10.12 Interrupt Register Description	
1. Peripheral Hardware	
-	
11.1 Clock Generator	
11.2 Basic Interval Timer	
11.3 Watch Dog Timer	
11.4 Watch Timer	
11.5 Timer 0	
11.6 Timer 1	
11.7 Timer 2	
11.8 Timer 3, 4	
11.9 Buzzer Driver	
11.10 SPI 2	
11.11 12-Bit A/D Converter	
11.12 USI0 (UART + SPI + I2C)	
11.13 USI1 (UART + SPI + I2C)	
11.15 LCD Driver	
2. Power Down Operation	
12.1 Overview	
12.2 Peripheral Operation in IDLE/STOP Mode	
12.3 IDLE Mode	
12.4 STOP Mode	
12.5 Release Operation of STOP Mode	
13. RESET	
13.1 Overview	
13.2 Reset Source	
4	July 20, 2011 Ver. 1.2

13.3 RESET Block Diagram	
13.4 RESET Noise Canceller	
13.5 Power on RESET	278
13.6 External RESETB Input	
13.7 Brown Out Detector Processor	
13.8 LVI Block Diagram	
14. On-chip Debug System	
14.1 Overview	
14.2 Two-Pin External Interface	
15. Flash Memory	293
15.1 Overview	293
16. Configure Option	
16.1 Configure Option Control	
17. APPENDIX	

List of Figures

Figure 1.1 OCD Debugger and Pin Description	14
Figure 1.2 PGMplusUSB (Single Writer)	15
Figure 1.3 StandAlone PGMplus (Single Writer)	15
Figure 1.4 StandAlone Gang8 (for Mass Production)	15
Figure 2.1 Block Diagram	16
Figure 3.1 MC96F6432Q 44MQFP-1010 Pin Assignment	17
Figure 3.2 MC96F6332D 32SOP Pin Assignment	18
Figure 3.3 MC96F6332M 28SOP Pin Assignment	18
Figure 4.1 44-Pin MQFP Package	19
Figure 4.2 32-Pin SOP Package	20
Figure 4.3 28-Pin SOP Package	21
Figure 6.1 General Purpose I/O Port	27
Figure 6.2 External Interrupt I/O Port	
Figure 7.1 AC Timing	36
Figure 7.2 SPI0/1/2 Timing	37
Figure 7.3 Waveform for UART0/1 Timing Characteristics	38
Figure 7.4 Timing Waveform for the UART0/1 Module	
Figure 7.5 I2C0/1 Timing	39
Figure 7.6 Stop Mode Release Timing when Initiated by an Interrupt	40
Figure 7.7 Stop Mode Release Timing when Initiated by RESETB	40
Figure 7.8 Crystal/Ceramic Oscillator	42
Figure 7.9 External Clock	42
Figure 7.10 Crystal Oscillator	43
Figure 7.11 External Clock	43
Figure 7.12 Clock Timing Measurement at XIN	44
Figure 7.13 Clock Timing Measurement at SXIN	44
Figure 7.14 Operating Voltage Range	45
Figure 7.15 Recommended Circuit and Layout	46
Figure 7.16 RUN (IDD1) Current	47
Figure 7.17 IDLE (IDD2) Current	47
Figure 7.18 SUB RUN (IDD3) Current	48
Figure 7.19 SUB IDLE (IDD4) Current	48

Figure 7.20 STOP (IDD5) Current	49
Figure 8.1 Program Memory	51
Figure 8.2 Data Memory Map	52
Figure 8.3 Lower 128 Bytes RAM	53
Figure 8.4 XDATA Memory Area	54
Figure 10.1 External Interrupt Description	84
Figure 10.2 Block Diagram of Interrupt	85
Figure 10.3 Interrupt Vector Address Table	87
Figure 10.4 Effective Timing of Interrupt Enable Register	88
Figure 10.5 Effective Timing of Interrupt Flag Register	88
Figure 10.6 Effective Timing of Interrupt	89
Figure 10.7 Interrupt Response Timing Diagram	90
Figure 10.8 Correspondence between Vector Table Address and the Entry Address of ISP	90
Figure 10.9 Saving/Restore Process Diagram and Sample Source	90
Figure 10.10 Timing Chart of Interrupt Acceptance and Interrupt Return Instruction	
Figure 11.1 Clock Generator Block Diagram	100
Figure 11.2 Basic Interval Timer Block Diagram	103
Figure 11.3 Watch Dog Timer Interrupt Timing Waveform	106
Figure 11.4 Watch Dog Timer Block Diagram	107
Figure 11.5 Watch Timer Block Diagram	109
Figure 11.6 8-Bit Timer/Counter Mode for Timer 0	113
Figure 11.7 8-Bit Timer/Counter 0 Example	113
Figure 11.8 8-Bit PWM Mode for Timer 0	114
Figure 11.9 PWM Output Waveforms in PWM Mode for Timer 0	115
Figure 11.10 8-Bit Capture Mode for Timer 0	116
Figure 11.11 Input Capture Mode Operation for Timer 0	117
Figure 11.12 Express Timer Overflow in Capture Mode	117
Figure 11.13 8-Bit Timer 0 Block Diagram	118
Figure 11.14 16-Bit Timer/Counter Mode for Timer 1	122
Figure 11.15 16-Bit Timer/Counter 1 Example	122
Figure 11.16 16-Bit Capture Mode for Timer 1	
Figure 11.17 Input Capture Mode Operation for Timer 1	124
Figure 11.18 Express Timer Overflow in Capture Mode	
Figure 11.19 16-Bit PPG Mode for Timer 1	
Figure 11.20 16-Bit PPG Mode Timming chart for Timer 1	126
Figure 11.21 16-Bit Timer/Counter Mode for Timer 1 and Block Diagram	127
Figure 11.22 16-Bit Timer/Counter Mode for Timer 2	132
Figure 11.23 16-Bit Timer/Counter 2 Example	
Figure 11.24 16-Bit Capture Mode for Timer 2	
Figure 11.25 Input Capture Mode Operation for Timer 2	
Figure 11.26 Express Timer Overflow in Capture Mode	
Figure 11.27 16-Bit PPG Mode for Timer 2	
Figure 11.28 16-Bit PPG Mode Timming chart for Timer 2	
Figure 11.29 16-Bit Timer/Counter Mode for Timer 2 and Block Diagram	
Figure 11.30 8-Bit Timer/Counter Mode for Timer 3, 4	
Figure 11.31 16-Bit Timer/Counter Mode for Timer 3	
Figure 11.32 8-Bit Capture Mode for Timer 3, 4	
Figure 11.33 16-Bit Capture Mode for Timer 3	
Figure 11.34 10-Bit PWM Mode (Force 6-ch)	149

Figure 11.35 10-Bit PWM Mode (Force All-ch)	150
Figure 11.36 Example of PWM at 4 MHz	151
Figure 11.37 Example of Changing the Period in Absolute Duty Cycle at 4 MHz	151
Figure 11.38 Example of PWM Output Waveform	152
Figure 11.39 Example of PWM waveform in Back-to-Back mode at 4 MHz	152
Figure 11.40 Example of Phase Correction and Frequency correction of PWM	153
Figure 11.41 Example of PWM External Synchronization with BLNK Input	153
Figure 11.42 Example of Force Drive All Channel with A-ch	154
Figure 11.43 Example of Force Drive 6-ch Mode	
Figure 11.44 Example of PWM Delay	
Figure 11.45 Two 8-Bit Timer 3, 4 Block Diagram	
Figure 11.46 16-Bit Timer 3 Block Diagram	159
Figure 11.47 10-Bit PWM Timer 4 Block Diagram	159
Figure 11.48 Buzzer Driver Block Diagram	
Figure 11.49 SPI 2 Block Diagram	173
Figure 11.50 SPI 2 Transmit/Receive Timing Diagram at CPHA = 0	
Figure 11.51 SPI 2 Transmit/Receive Timing Diagram at CPHA = 1	175
Figure 11.52 12-bit ADC Block Diagram	180
Figure 11.53 A/D Analog Input Pin with Capacitor	180
Figure 11.54 A/D Power (AVREF) Pin with Capacitor	
Figure 11.55 ADC Operation for Align Bit	181
Figure 11.56 A/D Converter Operation Flow	182
Figure 11.57 USI0 UART Block Diagram	
Figure 11.58 Clock Generation Block Diagram (USI0)	
Figure 11.59 Synchronous Mode SCK0 Timing (USI0)	
Figure 11.60 Frame Format (USI0)	
Figure 11.61 Asynchronous Start Bit Sampling (USI0)	
Figure 11.62 Asynchronous Sampling of Data and Parity Bit (USI0)	
Figure 11.63 Stop Bit Sampling and Next Start Bit Sampling (USI0)	
Figure 11.64 USI0 SPI Clock Formats when CPHA0=0	
Figure 11.65 USI0 SPI Clock Formats when CPHA0=1	198
Figure 11.66 USI0 SPI Block Diagram	
Figure 11.67 Bit Transfer on the I2C-Bus (USI0)	200
Figure 11.68 START and STOP Condition (USI0)	201
Figure 11.69 Data Transfer on the I2C-Bus (USI0)	201
Figure 11.70 Acknowledge on the I2C-Bus (USI0)	
Figure 11.71 Clock Synchronization during Arbitration Procedure (USI0)	203
Figure 11.72 Arbitration Procedure of Two Masters (USI0)	203
Figure 11.73 Formats and States in the Master Transmitter Mode (USI0)	205
Figure 11.74 Formats and States in the Master Receiver Mode (USI0)	207
Figure 11.75 Formats and States in the Slave Transmitter Mode (USI0)	209
Figure 11.76 Formats and States in the Slave Receiver Mode (USI0)	
Figure 11.77 USI0 I2C Block Diagram	
Figure 11.78 USI1 UART Block Diagram	
Figure 11.79 Clock Generation Block Diagram (USI1)	
Figure 11.80 Synchronous Mode SCK1 Timing (USI1)	226
Figure 11.81 Frame Format (USI1)	
Figure 11.82 Asynchronous Start Bit Sampling (USI1)	
Figure 11.83 Asynchronous Sampling of Data and Parity Bit (USI1)	231

F	igure 11.84 Stop Bit Sampling and Next Start Bit Sampling (USI1)	232
F	igure 11.85 USI1 SPI Clock Formats when CPHA1=0	234
F	igure 11.86 USI1 SPI Clock Formats when CPHA1=1	235
F	igure 11.87 USI1 SPI Block Diagram	236
F	igure 11.88 Bit Transfer on the I2C-Bus (USI1)	237
F	igure 11.89 START and STOP Condition (USI1)	238
F	igure 11.90 Data Transfer on the I2C-Bus (USI1)	238
F	igure 11.91 Acknowledge on the I2C-Bus (USI1)	239
F	igure 11.92 Clock Synchronization during Arbitration Procedure (USI1)	240
F	igure 11.93 Arbitration Procedure of Two Masters (USI1)	240
F	igure 11.94 Formats and States in the Master Transmitter Mode (USI1)	242
F	igure 11.95 Formats and States in the Master Receiver Mode (USI1)	244
F	igure 11.96 Formats and States in the Slave Transmitter Mode (USI1)	246
F	igure 11.97 Formats and States in the Slave Receiver Mode (USI1)	248
F	igure 11.98 USI1 I2C Block Diagram	249
F	igure 11.99 LCD Circuit Block Diagram	261
F	igure 11.100 LCD Signal Waveforms (1/2Duty, 1/2Bias)	262
F	igure 11.101 LCD Signal Waveforms (1/3Duty, 1/3Bias)	263
F	igure 11.102 LCD Signal Waveforms (1/4Duty, 1/3Bias)	264
	igure 11.103 LCD Signal Waveforms (1/8Duty, 1/4Bias)	
	igure 11.104 Internal Resistor Bias Connection	
F	igure 11.105 External Resistor Bias Connection	267
F	igure 11.106 LCD Circuit Block Diagram	268
	igure 12.1 IDLE Mode Release Timing by External Interrupt	
	igure 12.2 STOP Mode Release Timing by External Interrupt	
	igure 12.3 STOP Mode Release Flow	
	igure 13.1 RESET Block Diagram	
	igure 13.2 Reset noise canceller timer diagram	
	igure 13.3 Fast VDD Rising Time	
	igure 13.4 Internal RESET Release Timing On Power-Up	
	igure 13.5 Configuration Timing when Power-on	
	igure 13.6 Boot Process WaveForm	
	igure 13.7 Timing Diagram after RESET	
	igure 13.8 Oscillator generating waveform example	
	igure 13.9 Block Diagram of BOD	
	igure 13.10 Internal Reset at the power fail situation	
	igure 13.11 Configuration timing when BOD RESET	
	igure 13.12 LVI Diagram	
	igure 14.1 Block Diagram of On-Chip Debug System	
	igure 14.2 10-bit Transmission Packet	
	igure 14.3 Data Transfer on the Twin Bus	
	igure 14.4 Bit Transfer on the Serial Bus	
	igure 14.5 Start and Stop Condition	
	igure 14.6 Acknowledge on the Serial Bus	
	igure 14.7 Clock Synchronization during Wait Procedure	
	igure 14.8 Connection of Transmission	
-	igure 15.1 Flash Program ROM Structure	294

List of Tables

Table 1-1 Ordering Information of MC96F6432	13
Table 5-1 Normal Pin Description	22
Table 7-1 Absolute Maximum Ratings	29
Table 7-2 Recommended Operating Conditions	29
Table 7-3 A/D Converter Characteristics	30
Table 7-4 Power-on Reset Characteristics	30
Table 7-5 LVR and LVI Characteristics	
Table 7-6 High Internal RC Oscillator Characteristics	32
Table 7-7 Internal WDTRC Oscillator Characteristics	32
Table 7-8 LCD Voltage Characteristics	
Table 7-9 DC Characteristics	34
Table 7-10 AC Characteristics	36
Table 7-11 SPI0/1/2 Characteristics	37
Table 7-12 UART0/1 Characteristics	38
Table 7-13 I2C0/1 Characteristics	
Table 7-14 Data Retention Voltage in Stop Mode	
Table 7-15 Internal Flash Rom Characteristics	
Table 7-16 Input/Output Capacitance	
Table 7-17 Main Clock Oscillator Characteristics	
Table 7-18 Sub Clock Oscillator Characteristics	
Table 7-19 Main Oscillation Stabilization Characteristics	
Table 7-20 Sub Oscillation Stabilization Characteristics	
Table 8-1 SFR Map Summary	55
Table 8-2 SFR Map Summary	56
Table 8-2 SFR Map Summary Table 8-3 SFR Map	56 57
Table 8-2 SFR Map Summary Table 8-3 SFR Map Table 9-1 Port Register Map	56 57 65
Table 8-2 SFR Map Summary Table 8-3 SFR Map Table 9-1 Port Register Map Table 10-1 Interrupt Group Priority Level	56 57 65 83
Table 8-2 SFR Map Summary Table 8-3 SFR Map Table 9-1 Port Register Map Table 10-1 Interrupt Group Priority Level Table 10-2 Interrupt Vector Address Table	56 57 65 83 86
Table 8-2 SFR Map Summary Table 8-3 SFR Map Table 9-1 Port Register Map Table 10-1 Interrupt Group Priority Level Table 10-2 Interrupt Vector Address Table Table 10-3 Interrupt Register Map	56 57 65 83 86 93
Table 8-2 SFR Map Summary Table 8-3 SFR Map Table 9-1 Port Register Map Table 10-1 Interrupt Group Priority Level Table 10-2 Interrupt Vector Address Table Table 10-3 Interrupt Register Map Table 11-1 Clock Generator Register Map	56 57 65 83 86 93 101
Table 8-2 SFR Map Summary Table 8-3 SFR Map Table 9-1 Port Register Map Table 10-1 Interrupt Group Priority Level Table 10-2 Interrupt Vector Address Table Table 10-3 Interrupt Register Map Table 11-1 Clock Generator Register Map Table 11-2 Basic Interval Timer Register Map	56 57 65 83 86 93 101 104
Table 8-2 SFR Map Summary Table 8-3 SFR Map. Table 9-1 Port Register Map. Table 10-1 Interrupt Group Priority Level. Table 10-2 Interrupt Vector Address Table Table 10-3 Interrupt Register Map. Table 11-1 Clock Generator Register Map. Table 11-2 Basic Interval Timer Register Map. Table 11-3 Watch Dog Timer Register Map.	56 57 83 93 93 101 104 107
Table 8-2 SFR Map Summary Table 8-3 SFR Map Table 9-1 Port Register Map Table 10-1 Interrupt Group Priority Level Table 10-2 Interrupt Vector Address Table Table 10-3 Interrupt Register Map Table 11-1 Clock Generator Register Map Table 11-2 Basic Interval Timer Register Map Table 11-3 Watch Dog Timer Register Map Table 11-4 Watch Timer Register Map	56 57 65 83 93 101 104 107 110
Table 8-2 SFR Map SummaryTable 8-3 SFR MapTable 9-1 Port Register MapTable 10-1 Interrupt Group Priority LevelTable 10-2 Interrupt Vector Address TableTable 10-3 Interrupt Register MapTable 11-1 Clock Generator Register MapTable 11-2 Basic Interval Timer Register MapTable 11-3 Watch Dog Timer Register MapTable 11-4 Watch Timer Register MapTable 11-5 Timer 0 Operating Modes	56 57 65 83 93 101 104 107 110 112
Table 8-2 SFR Map Summary Table 8-3 SFR Map. Table 9-1 Port Register Map. Table 10-1 Interrupt Group Priority Level. Table 10-2 Interrupt Vector Address Table Table 10-3 Interrupt Register Map. Table 11-1 Clock Generator Register Map. Table 11-2 Basic Interval Timer Register Map. Table 11-3 Watch Dog Timer Register Map. Table 11-4 Watch Timer Register Map. Table 11-5 Timer 0 Operating Modes. Table 11-6 Timer 0 Register Map.	56 57 65 83 93 101 104 107 110 112 119
Table 8-2 SFR Map SummaryTable 8-3 SFR Map.Table 9-1 Port Register Map.Table 10-1 Interrupt Group Priority Level.Table 10-2 Interrupt Vector Address TableTable 10-3 Interrupt Register Map.Table 11-1 Clock Generator Register Map.Table 11-2 Basic Interval Timer Register Map.Table 11-3 Watch Dog Timer Register Map.Table 11-4 Watch Timer Register Map.Table 11-5 Timer 0 Operating Modes.Table 11-6 Timer 1 Operating Modes.	56 57 65 93 101 104 107 110 112 119 121
Table 8-2 SFR Map SummaryTable 8-3 SFR Map.Table 9-1 Port Register MapTable 10-1 Interrupt Group Priority Level.Table 10-2 Interrupt Vector Address TableTable 10-3 Interrupt Register MapTable 11-1 Clock Generator Register MapTable 11-2 Basic Interval Timer Register MapTable 11-3 Watch Dog Timer Register MapTable 11-4 Watch Timer Register MapTable 11-5 Timer 0 Operating ModesTable 11-6 Timer 1 Operating ModesTable 11-8 Timer 2 Register Map	56 57 65 83 93 101 104 107 110 112 119 121 127
Table 8-2 SFR Map SummaryTable 8-3 SFR MapTable 9-1 Port Register MapTable 10-1 Interrupt Group Priority LevelTable 10-2 Interrupt Vector Address TableTable 10-3 Interrupt Register MapTable 11-1 Clock Generator Register MapTable 11-2 Basic Interval Timer Register MapTable 11-3 Watch Dog Timer Register MapTable 11-4 Watch Timer Register MapTable 11-5 Timer 0 Operating ModesTable 11-7 Timer 1 Operating ModesTable 11-8 Timer 2 Register Map	56 57 65 83 93 101 107 110 112 119 121 127 131
Table 8-2 SFR Map SummaryTable 8-3 SFR MapTable 9-1 Port Register MapTable 10-1 Interrupt Group Priority LevelTable 10-2 Interrupt Vector Address TableTable 10-3 Interrupt Register MapTable 11-1 Clock Generator Register MapTable 11-2 Basic Interval Timer Register MapTable 11-3 Watch Dog Timer Register MapTable 11-4 Watch Timer Register MapTable 11-5 Timer 0 Operating ModesTable 11-6 Timer 0 Register MapTable 11-7 Timer 1 Operating ModesTable 11-8 Timer 2 Register MapTable 11-9 Timer 2 Operating ModesTable 11-10 Timer 3 Register Map	56 57 65 83 93 101 104 107 110 112 121 121 131 138
Table 8-2 SFR Map SummaryTable 8-3 SFR MapTable 9-1 Port Register MapTable 10-1 Interrupt Group Priority LevelTable 10-2 Interrupt Vector Address TableTable 10-3 Interrupt Register MapTable 11-1 Clock Generator Register MapTable 11-2 Basic Interval Timer Register MapTable 11-3 Watch Dog Timer Register MapTable 11-4 Watch Timer Register MapTable 11-5 Timer 0 Operating ModesTable 11-7 Timer 1 Operating ModesTable 11-8 Timer 2 Register MapTable 11-9 Timer 3 Register MapTable 11-10 Timer 3, 4 Operating Modes	56 57 65 83 93 101 104 107 110 112 119 121 121 121 131 138 142
Table 8-2 SFR Map SummaryTable 8-3 SFR Map.Table 9-1 Port Register Map.Table 10-1 Interrupt Group Priority Level.Table 10-2 Interrupt Vector Address Table.Table 10-3 Interrupt Register Map.Table 11-1 Clock Generator Register Map.Table 11-2 Basic Interval Timer Register Map.Table 11-3 Watch Dog Timer Register Map.Table 11-4 Watch Timer Register Map.Table 11-5 Timer 0 Operating ModesTable 11-6 Timer 0 Register Map.Table 11-7 Timer 1 Operating ModesTable 11-9 Timer 2 Operating ModesTable 11-10 Timer 3, 4 Operating ModesTable 11-12 PWM Frequency vs. Resolution at 8 MHz	56 57 65 83 93 101 104 107 110 112 121 121 121 131 138 142 148
Table 8-2 SFR Map SummaryTable 8-3 SFR MapTable 9-1 Port Register MapTable 10-1 Interrupt Group Priority LevelTable 10-2 Interrupt Vector Address TableTable 10-3 Interrupt Register MapTable 11-1 Clock Generator Register MapTable 11-2 Basic Interval Timer Register MapTable 11-3 Watch Dog Timer Register MapTable 11-4 Watch Timer Register MapTable 11-5 Timer 0 Operating ModesTable 11-6 Timer 1 Operating ModesTable 11-9 Timer 2 Register MapTable 11-9 Timer 3 Register MapTable 11-10 Timer 3, 4 Operating ModesTable 11-12 PWM Frequency vs. Resolution at 8 MHzTable 11-13 PWM Channel Polarity	56 57 65 83 93 101 104 104 110 112 112 121 121 121 138 148 148
Table 8-2 SFR Map SummaryTable 8-3 SFR MapTable 9-1 Port Register MapTable 10-1 Interrupt Group Priority LevelTable 10-2 Interrupt Vector Address TableTable 10-3 Interrupt Register MapTable 11-1 Clock Generator Register MapTable 11-2 Basic Interval Timer Register MapTable 11-3 Watch Dog Timer Register MapTable 11-4 Watch Timer Register MapTable 11-5 Timer 0 Operating ModesTable 11-6 Timer 0 Register MapTable 11-7 Timer 1 Operating ModesTable 11-8 Timer 2 Register MapTable 11-9 Timer 2 Operating ModesTable 11-10 Timer 3, 4 Operating ModesTable 11-12 PWM Frequency vs. Resolution at 8 MHzTable 11-13 PWM Channel PolarityTable 11-14 Timer 3, 4 Register Map	56 57 65 83 93 101 104 107 110 112 112 127 121 121 121 131 138 148 148 160
Table 8-2 SFR Map SummaryTable 8-3 SFR MapTable 9-1 Port Register MapTable 10-1 Interrupt Group Priority LevelTable 10-2 Interrupt Vector Address TableTable 10-3 Interrupt Register MapTable 11-1 Clock Generator Register MapTable 11-2 Basic Interval Timer Register MapTable 11-3 Watch Dog Timer Register MapTable 11-4 Watch Timer Register MapTable 11-5 Timer 0 Operating ModesTable 11-6 Timer 1 Operating ModesTable 11-9 Timer 2 Register MapTable 11-9 Timer 3 Register MapTable 11-10 Timer 3, 4 Operating ModesTable 11-12 PWM Frequency vs. Resolution at 8 MHzTable 11-13 PWM Channel Polarity	56 57 65 83 93 101 104 107 110 112 121 121 121 121 131 138 148 160 171

Table 11-17 SPI 2 Register Map	. 176
Table 11-18 ADC Register Map	. 182
Table 11-19 Equations for Calculating USI0 Baud Rate Register Setting	. 188
Table 11-20 CPOL0 Functionality	. 196
Table 11-21 USI0 Register Map	.213
Table 11-22 Equations for Calculating USI1 Baud Rate Register Setting	. 225
Table 11-23 CPOL1 Functionality	. 233
Table 11-24 USI1 Register Map	.250
Table 11-25 Examples of USI0BD and USI1BD Settings for Commonly Used Oscillator Frequencies	259
Table 11-26 LCD Register Map	. 268
Table 12-1 Peripheral Operation during Power Down Mode	. 272
Table 12-2 Power Down Operation Register Map	. 276
Table 13-1 Reset State	. 277
Table 13-2 Boot Process Description	. 280
Table 13-3 Reset Operation Register Map	. 284
Table 15-1Flash Memory Register Map	. 295

MC96F6432

CMOS SINGLE-CHIP 8-BIT MICROCONTROLLER WITH 12-BIT A/D CONVERTER

1. Overview

1.1 Description

The MC96F6432 is advanced CMOS 8-bit microcontroller with 32k bytes of FLASH. This is powerful microcontroller which provides a highly flexible and cost effective solution to many embedded control applications. This provides the following features : 32k bytes of FLASH, 256 bytes of IRAM, 768 bytes of XRAM, general purpose I/O, basic interval timer, watchdog timer, 8/16-bit timer/counter, 16-bit PPG output, 8-bit PWM output, 10-bit PWM output, watch timer, buzzer driving port, SPI, USI, 12-bit A/D converter, LCD driver, on-chip POR, LVR, LVI, on-chip oscillator and clock circuitry. The MC96F6432 also supports power saving modes to reduce power consumption.

Device Name	FLASH	XRAM	IRAM	ADC	I/O PORT	Package
MC96F6432Q				16 channel	42	44 MQFP
MC96F6332D	32k bytes	768 bytes	256 bytes	12 channel	30	32 SOP
MC96F6332M				11 channel	26	28 SOP

1.2 Features

- CPU
- 8 Bit CISC Core (8051 Compatible)
- ROM (FLASH) Capacity
- 32k Bytes
- Flash with self read/write capability
- On chip debug and In-system programming (ISP)
- Endurance : 100,000 times
- 256 Bytes IRAM
- 768 Bytes XRAM
- (27 Bytes including LCD display RAM)
- General Purpose I/O (GPIO)
- Normal I/O : 9 Ports (P0[2:0], P5[5:0])
- LCD shared I/O : 33 Ports (P0[7:3], P1, P2, P3, P4)
- Basic Interval Timer (BIT)
- 8Bit × 1ch
- Watch Dog Timer (WDT)
- 8Bit × 1ch
- 5kHz internal RC oscillator
- Timer/ Counter
- 8Bit × 1ch (T0), 16Bit × 2ch (T1/T2)
- 8Bit × 2ch (T3/T4) or 16 Bit × 1ch (T3)
- Programmable Pulse Generation
- Pulse generation (by T1/T2)
- 8Bit PWM (by T0)
- 6-ch 10Bit PWM for Motor (by T4)
- Watch Timer (WT)
- 3.91mS/0.25S/0.5S/1S/1M interval at 32.768kHz
- Buzzer
- 8Bit × 1ch
- SPI 2
- 8Bit × 1ch
- USI0/1 (UART + SPI + I2C)
- 8Bit UART × 2ch, 8Bit SPI × 2ch and I2C × 2ch
- 12 Bit A/D Converter
- 16 Input channels
- LCD Driver
- 21 Segments and 8 Common terminals
- Internal or external resistor bias
- 1/2, 1/3, 1/4, 1/5, 1/6 and 1/8 duty selectable
- Resistor Bias and 16-step contrast control
- Power On Reset
- Reset release level (1.4V)

- Low Voltage Reset
 - 14 level detect (1.60V/ 2.00V/ 2.10V/ 2.20V/ 2.32V/ 2.44V/ 2.59V/ 2.75V/ 2.93V/ 3.14V/ 3.38V/ 3.67V/ 4.00V/ 4.40V)
- Low Voltage Indicator
- 13 level detect (2.00V/ 2.10V/ 2.20V/ 2.32V/ 2.44V/ 2.59V/ 2.75V/ 2.93V/ 3.14V/ 3.38V/ 3.67V/ 4.00V/ 4.40V)
- Interrupt Sources
- External Interrupts
 (EXINT0~7, EINT8, EINT10, EINT11, EINT12)
 (12)
- Timer(0/1/2/3/4) (5)
- WDT (1)
- BIT (1)
- WT (1)
- SPI 2 (1)
- USI0/1 (6)
- ADC (1)
- Internal RC Oscillator
- Inernal RC frequency: 16MHz ±0.5% (T_A= 25°C)
- Power Down Mode
- STOP, IDLE mode
- Operating Voltage and Frequency
- 1.8V ~ 5.5V (@32 ~ 38kHz with X-tal)
- 1.8V ~ 5.5V (@0.4 ~ 4.2MHz with X-tal)
- 2.7V ~ 5.5V (@0.4 ~ 10.0MHz with X-tal)
- 3.0V ~ 5.5V (@0.4 ~ 12.0MHz with X-tal)
- 1.8V ~ 5.5V (@0.5 ~ 8.0MHz with Internal RC)
- 2.0V ~ 5.5V (@0.5 ~ 16.0MHz with Internal RC)
- Voltage dropout converter included for core
- Minimum Instruction Execution Time
- 125nS (@ 16MHz main clock)
- 61µS (@t 32.768kHz sub clock)
- Operating Temperature: -40 ~ + 85 ℃
- Oscillator Type
- 0.4-12MHz Crystal or Ceramic for main clock
- 32.768kHz Crystal for sub clock
- Package Type
- 44 MQFP-1010
- 32 SOP
- 28 SOP
- Pb-free package

1.3 Ordering Information

Table 1-1 Ordering Information of MC96F6432

Device name	Device name ROM size		XRAM size	Package
MC96F6432Q				44 MQFP
MC96F6332D	32k bytes FLASH	256 bytes	768 bytes	32 SOP
MC96F6332M				28 SOP

1.4 Development Tools

1.4.1 Compiler

We do not provide the compiler. Please contact the third parties.

The core of MC96F6432 is Mentor 8051. And, device ROM size is smaller than 32k bytes. Developer can use all kinds of third party's standard 8051 compiler.

1.4.2 OCD emulator and debugger

The OCD (On Chip Debug) emulator supports ABOV Semiconductor's 8051 series MCU emulation.

The OCD interface uses two-wire interfacing between PC and MCU which is attached to user's system. The OCD can read or change the value of MCU internal memory and I/O peripherals. And the OCD also controls MCU internal debugging logic, it means OCD controls emulation, step run, monitoring, etc.

The OCD Debugger program works on Microsoft-Windows NT, 2000, XP, Vista (32bit) operating system.

If you want to see more details, please refer to OCD debugger manual. You can download debugger S/W and manual from our web-site.

Connection:

- SCLK (MC96F6432 P01 port)
- SDATA (MC96F6432 P00 port)

OCD connector diagram: Connect OCD with user system

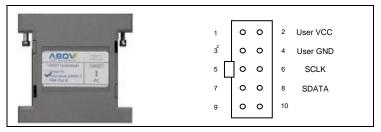


Figure 1.1 OCD Debugger and Pin Description

1.4.3 Programmer

Single programmer:

PGMplus USB: It programs MCU device directly.

Figure 1.2 PGMplusUSB (Single Writer)

StandAlone PGMplus: It programs MCU device directly.

Stand Alone PGM_Plus	

Figure 1.3 StandAlone PGMplus (Single Writer)

OCD emulator: It can write code in MCU device too, because OCD debugging supports ISP (In System Programming).

It does not require additional H/W, except developer's target system.

Gang programmer:

It programs 8 MCU devices at once.

So, it is mainly used in mass production line.

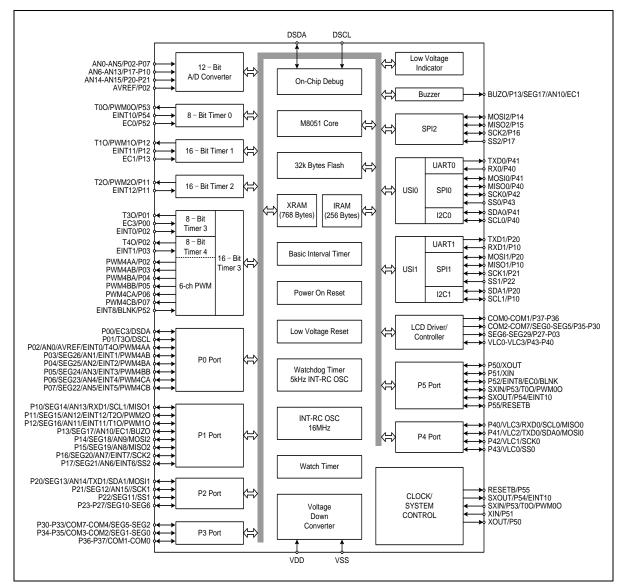

Gang programmer is standalone type, it means it does not require host PC, after a program is downloaded from host PC to Gang programmer.

Figure 1.4 StandAlone Gang8 (for Mass Production)

2. Block Diagram

Figure 2.1 Block Diagram

NOTES) 1. The P14–P17, P23–P25, P34–P37, and P43 are not in the 32-pin package. 2. The P13–P17, P22–P27, P34–P37, and P43 are not in the 28-pin package.

3. Pin Assignment

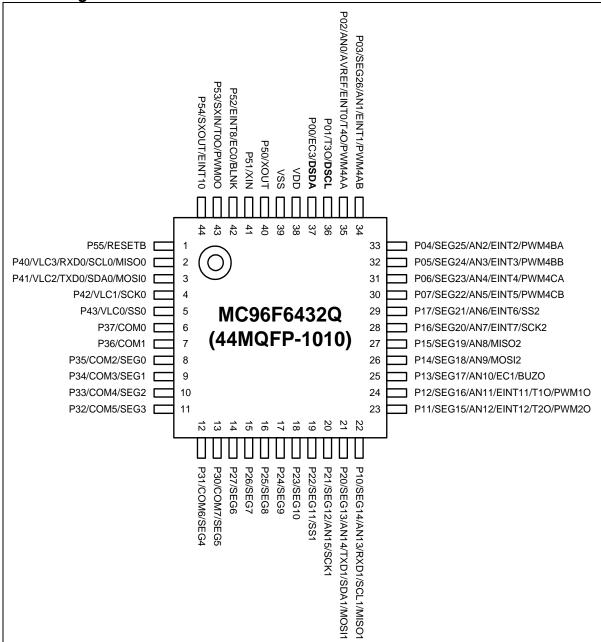
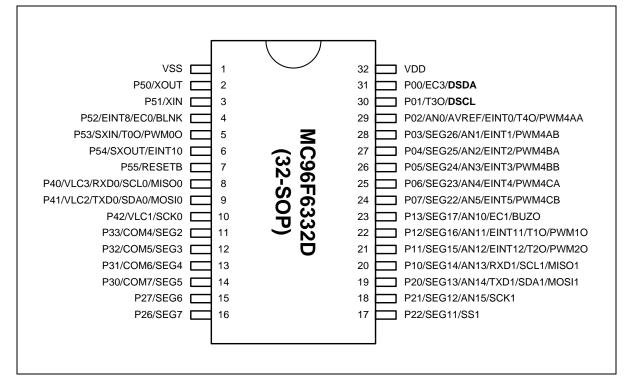



Figure 3.1 MC96F6432Q 44MQFP-1010 Pin Assignment

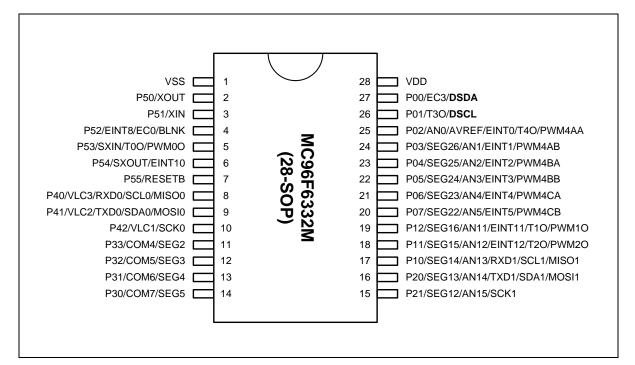

NOTE) On On-Chip Debugging, ISP uses P0[1:0] pin as DSDA, DSCL.

Figure 3.2 MC96F6332D 32SOP Pin Assignment

NOTES) 1. On On-Chip Debugging, ISP uses P0[1:0] pin as DSDA, DSCL.
2. The P14-P17, P23-P25, P34-P37 and P43 pins should be selected as a push-pull output or an input with pull-up resistor by software control when the 32-pin package is used.

Figure 3.3 MC96F6332M 28SOP Pin Assignment

NOTES) 1. On On-Chip Debugging, ISP uses P0[1:0] pin as DSDA, DSCL.

2. The P13-P17, P22-P27, P34-P37 and P43 pins should be selected as a push-pull output or an input with pull-up resistor by software control when the 32-pin package is used.

4. Package Diagram

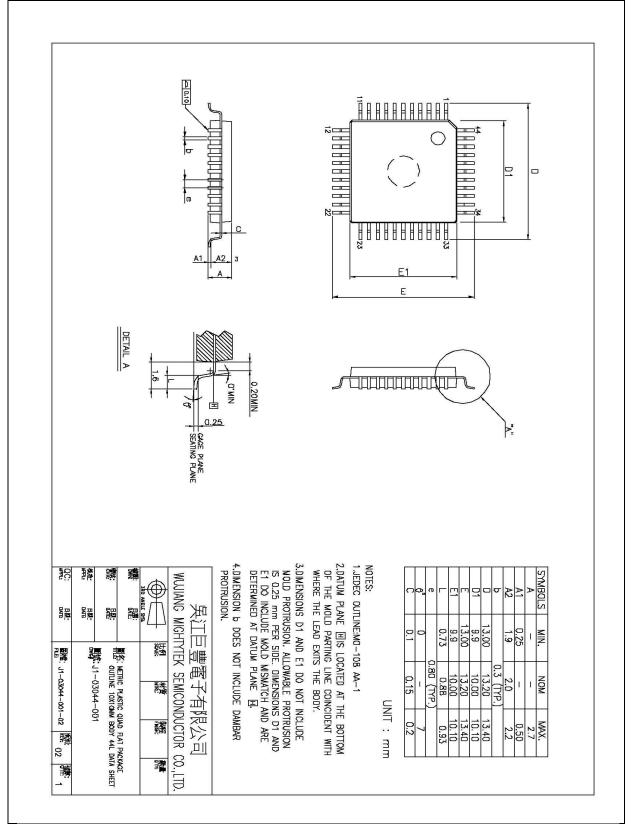


Figure 4.1 44-Pin MQFP Package

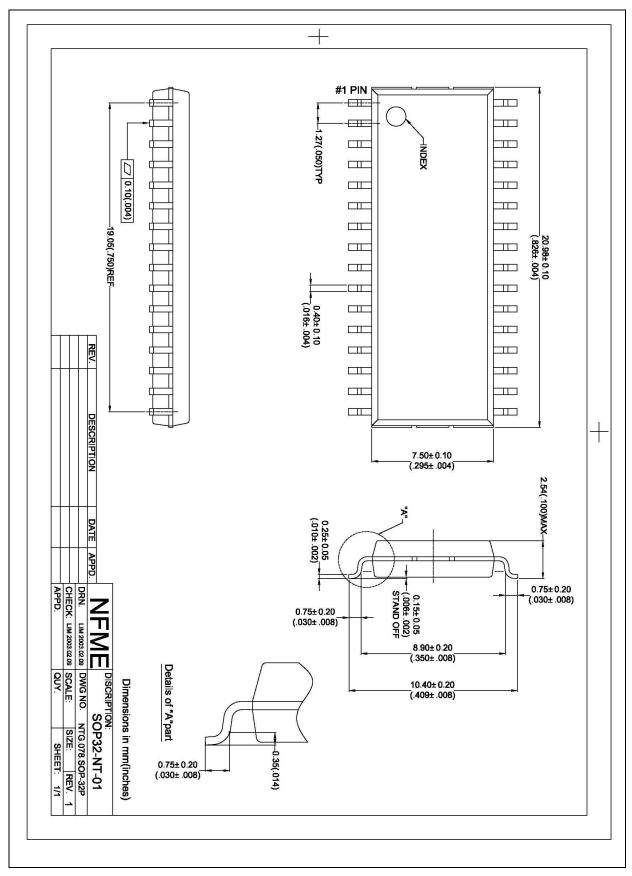


Figure 4.2 32-Pin SOP Package

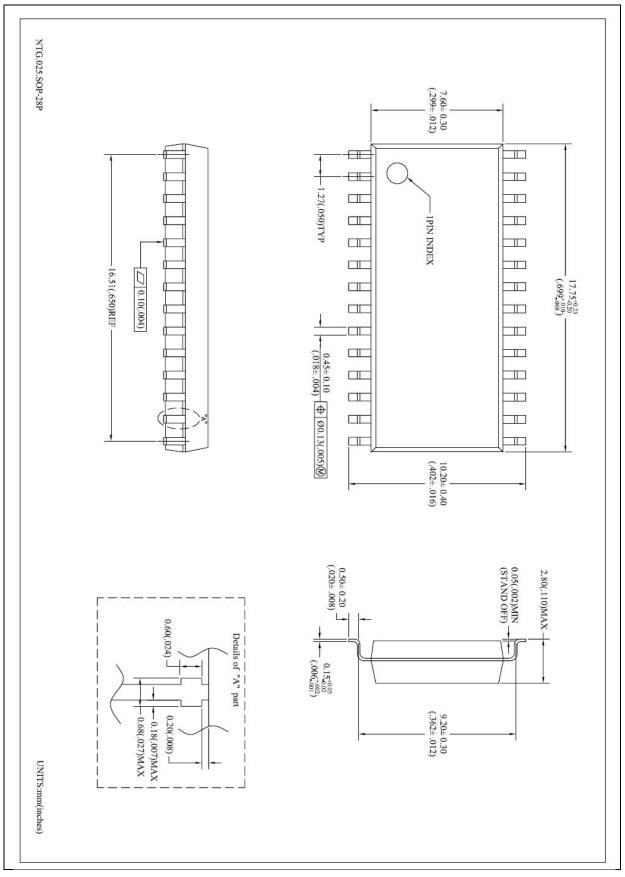


Figure 4.3 28-Pin SOP Package

5. Pin Description

Table 5-1 Normal Pin Description

PIN Name	I/O	Function	@RESET	Shared with
P00	I/O	Port 0 is a bit-programmable I/O port which can	Input	EC3/DSDA
P01		be configured as a schmitt-trigger input, a		T3O/DSCL
P02		push-pull output, or an open-drain output.		AN0/AVREF/EINT0/T4O/PWM4AA
P03		A pull-up resistor can be specified in 1-bit unit.		SEG26/AN1/EINT1/PWM4AB
P04				SEG25/AN2/EINT2/PWM4BA
P05				SEG24/AN3/EINT3/PWM4BB
P06				SEG23/AN4/EINT4/PWM4CA
P07				SEG22/AN5/EINT5/PWM4CB
P10	I/O	Port 1 is a bit-programmable I/O port which can	Input	SEG14/AN13/RXD1/SCL1/MISO1
P11		be configured as a schmitt-trigger input, a push-pull output, or an open-drain output.		SEG15/AN12/EINT12/T2O/PWM2O
P12		A pull-up resistor can be specified in 1-bit unit.		SEG16/AN11/EINT11/T10/PWM10
P13		The P14 – P17 are not in the 32-pin package.		SEG17/AN10/EC1/BUZO
P14		The P13 – P17 are not in the 28-pin package.		SEG18/AN9/MOSI2
P15				SEG19/AN8/MISO2
P16				SEG20/AN7/EINT7/SCK2
P17				SEG21/AN6/EINT6/SS2
P20	I/O	Port 2 is a bit-programmable I/O port which can	Input	SEG13/AN14/TXD1/SDA1/MOSI1
P21		be configured as an input, a push-pull output, or an open-drain output.		SEG12/AN15/SCK1
P22		A pull-up resistor can be specified in 1-bit unit.		SEG11/SS1
P23		The P23 – P25 are not in the 32-pin package.		SEG10
P24		The P22 – P27 are not in the 28-pin package.		SEG9
P25				SEG8
P26				SEG7
P27				SEG6
P30	I/O	Port 3 is a bit-programmable I/O port which can	Input	COM7/SEG5
P31		be configured as an input, a push-pull output.		COM6/SEG4
P32		A pull-up resistor can be specified in 1-bit unit.		COM5/SEG3
P33		The P34 – P37 are only in the 44-pin package.		COM4/SEG2
P34				COM3/SEG1
P35				COM2/SEG0
P36				COM1
P37				COM0
P40	I/O	Port 4 is a bit-programmable I/O port which can	Input	VLC3/RXD0/SCL0/MISO0
P41		be configured as an input, a push-pull output, or an open-drain output.		VLC2/TXD0/SDA0/MOSI0
P42		A pull-up resistor can be specified in 1-bit unit.		VLC1/SCK0
P43		The P43 is only in the 44-pin package.		VLC0/SS0

PIN Name	I/O	Function	@RESET	Shared with
P50	I/O	Port 5 is a bit-programmable I/O port which	Input	XOUT
P51		can be configured as a schmitt-trigger input or a push-pull output.		XIN
P52		A pull-up resistor can be specified in 1-bit		EINT8/EC0/BLNK
P53		unit.		SXIN/T00/PWM00
P54				SXOUT/EINT10
P55				RESETB
EINT0	I/O	External interrupt input and Timer 3 capture input	Input	P02/AN0/AVREF/T4O/PWM4AA
EINT1	I/O	External interrupt input and Timer 4 capture input	Input	P03/SEG26/AN1/PWM4AB
EINT2	I/O	External interrupt inputs	Input	P04/SEG25/AN2/PWM4BA
EINT3				P05/SEG24/AN3/PWM4BB
EINT4				P06/SEG23/AN4/PWM4CA
EINT5				P07/SEG22/AN5/PWM4CB
EINT6				P17/SEG21/AN6/SS2
EINT7				P16/SEG20/AN7/SCK2
EINT8				P52/EC0/BLNK
EINT10	I/O	External interrupt input and Timer 0 capture input	Input	P54/SXOUT
EINT11	I/O	External interrupt input and Timer 1 capture input	Input	P12/SEG16/AN11/T10/PWM10
EINT12	I/O	External interrupt input and Timer 2 capture input	Input	P11/SEG15/AN12/T2O/PWM2O
TOO	I/O	Timer 0 interval output	Input	P53/SXIN/PWM0O
T10	I/O	Timer 1 interval output	Input	P12/SEG16/AN11/EINT11/PWM1O
T2O	I/O	Timer 2 interval output	Input	P11/SEG15/AN12/EINT12/PWM2O
T3O	I/O	Timer 3 interval output	Input	P01/DSCL
T40	I/O	Timer 4 interval output	Input	P02/AN0/AVREF/EINT0/PWM4AA
PWM0O	I/O	Timer 0 PWM output	Input	P53/SXIN/T0O
PWM10	I/O	Timer 1 PWM output	Input	P12/SEG16/AN11/EINT11/T10
PWM2O	I/O	Timer 2 PWM output	Input	P11/SEG15/AN12/EINT12/T2O
PWM4AA	I/O	Timer 4 PWM outputs	Input	P02/AN0/AVREF/EINT0/T4O
PWM4AB		-		P03/SEG26/AN1/EINT1
PWM4BA				P04/SEG25/AN2/EINT2
PWM4BB				P05/SEG24/AN3/EINT3
PWM4CA				P06/SEG23/AN4/EINT4
PWM4CB				P07/SEG22/AN5/EINT5
BLNK	I/O	External sync signal input for 6-ch PWMs	Input	P52/EINT8/EC0
EC0	I/O	Timer 0 event count input	Input	P52/EINT8/BLNK
EC1	I/O	Timer 1 event count input	Input	P13/SEG17/AN10
EC3	I/O	Timer 3 event count input	Input	P00/DSDA

PIN				
Name	I/O	Function	@RESET	Shared with
BUZO	I/O	Buzzer signal output	Input	P13/SEG17/AN10/EC1
SCK0	I/O	Serial 0 clock input/output	Input	P42/VLC1
SCK1	I/O	Serial 1 clock input/output	Input	P21/SEG12/AN15
SCK2	I/O	Serial 2 clock input/output	Input	P16/SEG20/AN7/EINT7
MOSI0	I/O	SPI 0 master output, slave input	Input	P41/VLC2/TXD0/SDA0
MOSI1	I/O	SPI 1 master output, slave input	Input	P20/SEG13/AN14/TXD1/SDA1
MOSI2	I/O	SPI 2 master output, slave input	Input	P14/SEG18/AN9
MISO0	I/O	SPI 0 master input, slave output	Input	P40/VLC3/RXD0/SCL0
MISO1	I/O	SPI 1 master input, slave output	Input	P10/SEG14/AN13/RXD1/SCL1
MISO2	I/O	SPI 2 master input, slave output	Input	P15/SEG19/AN8
SS0	I/O	SPI 0 slave select input	Input	P43/VLC0
SS1	I/O	SPI 1 slave select input	Input	P22/SEG11
SS2	I/O	SPI 2 slave select input	Input	P17/SEG21/AN6/EINT6
TXD0	I/O	UART 0 data output	Input	P41/VLC2/SDA0/MOSI0
TXD1	I/O	UART 1 data output	Input	P20/SEG13/AN14/SDA1/MOSI1
RXD0	I/O	UART 0 data input	Input	P40/VLC3/SCL0/MISO0
RXD1	I/O	UART 1 data input	Input	P10/SEG14/AN13/SCL1/MISO1
SCL0	I/O	I2C 0 clock input/output	Input	P40/VLC3/RXD0/MISO0
SCL1	I/O	I2C 1 clock input/output	Input	P10/SEG14/AN13/RXD1/MISO1
SDA0	I/O	I2C 0 data input/output	Input	P41/VLC2/TXD0/MOSI0
SDA1	I/O	I2C 1 data input/output	Input	P20/SEG13/AN14/TXD1/MOSI1
AVREF	I/O	A/D converter reference voltage	Input	P02/AN0/EINT0/T4O/PWM4AA
AN0	I/O	A/D converter analog input channels	Input	P02/AVREF/EINT0/T4O/PWM4AA
AN1				P03/SEG26/EINT1/PWM4AB
AN2				P04/SEG25/EINT2/PWM4BA
AN3				P05/SEG24/EINT3/PWM4BB
AN4				P06/SEG23/EINT4/PWM4CA
AN5				P07/SEG22/EINT5/PWM4CB
AN6				P17/SEG21/EINT6/SS2
AN7				P16/SEG20/EINT7/SCK2
AN8				P15/SEG19/MISO2
AN9				P14/SEG18/MOSI2
AN10				P13/SEG17/EC1
AN11				P12/SEG16/EINT11/T10/PWM10
AN12				P11/SEG15/EINT12/T2O/PWM2O
AN13				P10/SEG14/RXD1/SCL1/MISO1
AN14				P20/SEG13/TXD1/SDA1/MOSI1
AN15				P21/SEG12/SCK1

PIN Name	I/O	Function	@RESET	Shared with
VLC0	I/O	LCD bias voltage pins	Input	P43/SS0
VLC1				P42/SCK0
VLC2				P41/TXD0/SDA0/MOSI0
VLC3				P40/RXD0/SCL0/MISO0
COM0– COM1	I/O	LCD common signal outputs	Input	P37–P36
COM2– COM3				P35-P34/SEG0-SEG1
COM4– COM7				P33-P30/SEG2-SEG5
SEG0- SEG1	I/O	LCD segment signal outputs	Input	P35–P34/COM2–COM3
SEG2– SEG5				P33–P30/COM4–COM7
SEG6– SEG10				P27–P23
SEG11				P22/SS1
SEG12				P21/SCK1/AN15
SEG13	-			P20/AN14/TXD1/SDA1/MOSI1
SEG14				P10/AN13/RXD1/SCL1/MISO1
SEG15				P11/AN12/EINT12/T2O/PWM2O
SEG16				P12/AN11/EINT11/T10/PWM10
SEG17				P13/AN10/EC1
SEG18				P14/AN9/MOSI2
SEG19				P15/AN8/MISO2
SEG20	-			P16/AN7/EINT7/SCK2
SEG21	-			P17/AN6/EINT6/SS2
SEG22	-			P07/AN5/EINT5/PWM4CB
SEG23	-			P06/AN4/EINT4/PWM4CA
SEG24	-			P05/AN3/EINT3/PWM4BB
SEG25	-			P04/AN2/EINT2/PWM4BA
SEG26				P03/AN1/EINT1/PWM4AB

PIN Name	I/O	Function	@RESET	Shared with
RESETB	I/O	System reset pin with a pull-up resistor when it is selected as the RESETB by CONFIGURE OPTION	Input	P55
DSDA	I/O	On chip debugger data input/output (NOTE4,5)	Input	P00/EC3
DSCL	I/O	On chip debugger clock input (NOTE4,5)	Input	P01/T3O
XIN	I/O	Main oscillator pins	Input	P51
XOUT				P50
SXIN	I/O	Sub oscillator pins	Input	P53/T00/PWM00
SXOUT				P54/EINT10
VDD, VSS	_	Power input pins	-	-

NOTES) 1. The P14–P17, P23–P25, P34–P37, and P43 are not in the 32-pin package.

2. The P13–P17, P22–P27, P34–P37, and P43 are not in the 28-pin package.pin

3. The P55/RESETB pin is configured as one of the P55 and RESETB pin by the "CONFIGURE OPTION."

4. If the P00/EC3/DSDA and P01/T3O/DSCL pins are connected to an emulator during the resetor power-on reset, the pins are automatically configured as the debugger pins.

5. The P00/EC3/DSDA and P01/T3O/DSCL pins are configured as inputs with internal pull-up resistor only during the reset or power-on reset.

6. The P50/XOUT, P51/XIN, P53/SXINT/T00/PWM0O, and P54/SXOUT/EINT10 pins are configured as a function pin by software control.

6. Port Structures

6.1 General Purpose I/O Port

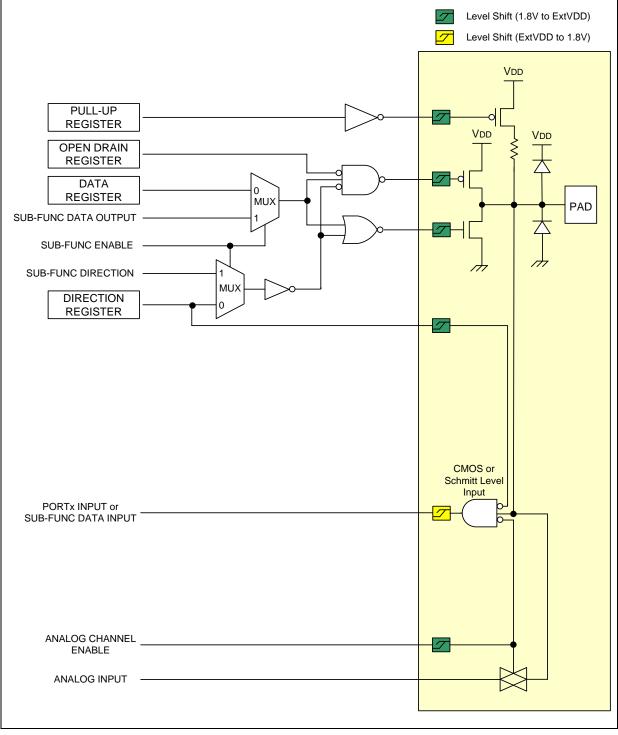


Figure 6.1 General Purpose I/O Port

6.2 External Interrupt I/O Port

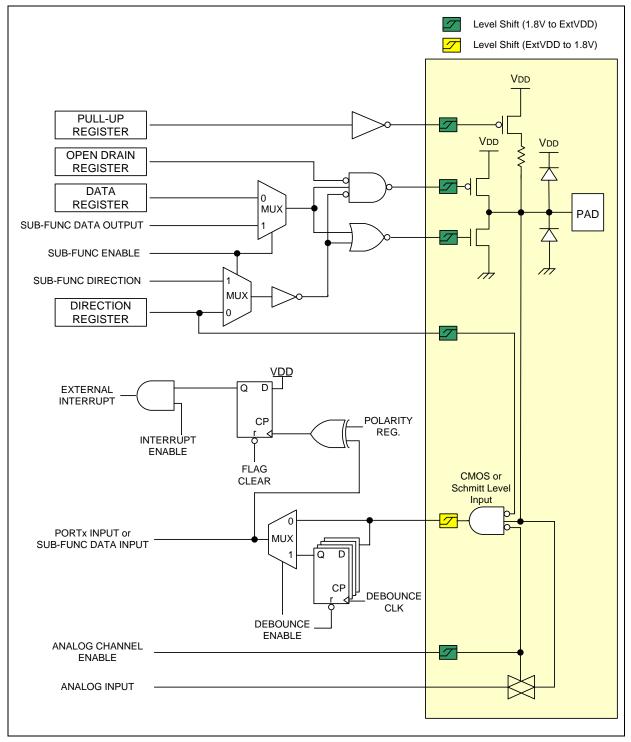


Figure 6.2 External Interrupt I/O Port

7. Electrical Characteristics

7.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	Note
Supply Voltage	VDD	-0.3 ~ +6.5	V	_
	VI	-0.3 ~ VDD+0.3	V	
	Vo	-0.3 ~ VDD+0.3	V	Voltage on any pin with respect to VSS
Normal Voltage Pin	I _{ОН}	-10	mA	Maximum current output sourced by (I_{OH} per I/O pin)
5	∑I _{ОН}	-80	mA	Maximum current (ΣI _{OH})
	I _{OL}	60	mA	Maximum current sunk by (IoL per I/O pin)
	∑l _{OL}	120	mA	Maximum current (∑l _{OL})
Total Power Dissipation	PT	600	mW	_
Storage Temperature	T _{STG}	-65 ~ +150	°C	_

Table 7-1 Absolute Maximum Ratings

NOTE) Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

7.2 Recommended Operating Conditions

Table 7-2 Recommended Operating Conditions

					(T _A =	-40°C ∼	+85°C)
Parameter	Symbol	Conditio	ons	MIN	TYP	MAX	Unit
		f _x = 32 ~ 38kHz	SX-tal	1.8	_	5.5	
	VDD	$f_X = 0.4 \sim 4.2 MHz$	_	1.8	_	5.5	V
		f _X = 0.4 ~ 10.0MHz	X-tal	2.7	_	5.5	
Operating Voltage		f _X = 0.4 ~ 12.0MHz		3.0	_	5.5	
		f _X = 0.5 ~ 8.0MHz		1.8	_	5.5	
		f _X = 0.5 ~ 16.0MHz	Internal RC	2.0	_	5.5	
Operating Temperature	T _{OPR}	VDD= 1.8 ~ 5.5V		-40	_	85	°C

7.3 A/D Converter Characteristics

Table 7-3 A/D Converter Characteristics

	Onaracter	13103	(T _A	= -40°C ~ +8	5°C, VDD= 1.	.8V ~ 5.5V, V	SS= 0V)
Parameter	Symbol	Co	onditions	MIN	TYP	MAX	Unit
Resolution	_		_		12	_	bit
Integral Linear Error	ILE			_	_	±3	
Differential Linearity Error	DLE	AVREF= 2	.7V – 5.5V	_	_	±1	LSB
Zero Offset Error	Zero Offset Error ZOE		fx= 8MHz		-	±3	
Full Scale Error	FSE			_	_	±3	
Conversion Time	t _{CON}	12bit resolution, 8MHz		20	_	_	μS
Analog Input Voltage	V _{AN}		_	VSS	_	AVREF	
Analog Reference Voltage	AVREF	_		1.8	_	VDD	V
Analog Input Leakage Current	I _{AN}	AVREF= 5.12V		_	_	2	μA
		Enable		-	1	2	mA
ADC Operating Current	I _{ADC}	Disable	VDD= 5.12V	_	_	0.1	μA

NOTES) 1. Zero offset error is the difference between 000000000 and the converted output for zero input voltage (VSS).

2. Full scale error is the difference between 1111111111 and the converted output for full-scale input voltage (AVREF).

7.4 Power-On Reset Characteristics

Table 7-4 Power-on Reset Characteristics

	(T _A = -40)°C ~ +85°C	C, VDD= 1.8	3V ~ 5.5V, \	/SS= 0V)	
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
RESET Release Level	V _{POR}	_	_	1.4	_	V
VDD Voltage Rising Time	t _R	_	0.05	-	_	V/mS
POR Current	I _{POR}	-	_	0.2	_	μA

7.5 Low Voltage Reset and Low Voltage Indicator Characteristics

Table 7-5 LVR and LVI Characteristics

Table 7-5 LVR and LVI	Characteris	105	(T _A = -40°C ~	- +85°C, V	DD= 1.8V -	- 5.5V, VS	S= 0V)
Parameter	Symbol	Condition	s	MIN	TYP	MAX	Unit
				_	1.60	1.75	
				1.85	2.00	2.15	
				1.95	2.10	2.25	
				2.05	2.20	2.35	
				2.17	2.32	2.47	
				2.29	2.44	2.59	
Detection Level	V _{LVR} V _{LVI}	The LVR can select a	2.39	2.59	2.79	V	
Detection Level		LVI can select other levels except 1.60V.		2.55	2.75		2.95
			2.73	2.93	3.13		
			2.94	3.14	3.34		
			3.18	3.38	3.58		
			3.37	3.67	3.97		
			3.70	4.00	4.30		
					4.40		4.70
Hysteresis	riangle V	_		_	10	100	mV
Minimum Pulse Width	t _{LW}	_		100	-	-	μS
		Enable (Both)		_	10.0	15.0	
LVR and LVI Current	I _{BL}	Enable (One of two)	VDD= 3V	_	8.0	12.0	μA
		Disable (Both)		_	_	0.1	

7.6 High Internal RC Oscillator Characteristics

Table 7-0 High Internal			_A = -40°C ~ +8	5°C, VDD= 1	.8V ~ 5.5V, V	/SS= 0V)
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Frequency	f _{IRC}	$V_{DD} = 2.0 - 5.5 V$	_	16	_	MHz
		T _A = 25°C	_		±0.5	_
Talawaya	-	$T_A = 0^{\circ}C$ to +70°C		_	±1	%
Tolerance		$T_{A} = -20^{\circ}C \text{ to } +80^{\circ}C$	_		±2	
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$			±3	
Clock Duty Ratio	TOD	_	40	50	60	%
Stabilization Time	T _{HFS}	_	_	_	100	μS
		Enable	_	0.2	_	mA
IRC Current	I _{IRC}	Disable	-	_	0.1	μA

7.7 Internal Watch-Dog Timer RC Oscillator Characteristics

Table 7-7 Internal WDTRC Oscillator Characteristics

Table 7-7 Internal WDTRC Oscillator Characteristics $(T_A = -40^{\circ}C \sim +85^{\circ}C, VDD = 1.8V \sim 5.5V, VSS = 0V)$							
Parameter	Symbol	Symbol Conditions		TYP	MAX	Unit	
Frequency	f _{WDTRC}	_	2	5	10	kHz	
Stabilization Time	t _{WDTS}	_	_	_	1	mS	
WDTRC Current	IWDTRC	Enable	_	1	-	•	
		Disable	-	-	0.1	μA	

7.8 LCD Voltage Characteristics

Table 7-8 LCD Voltage Characteristics

	-		(`	T _A = -40°C ~ +	-85°C, VDD= 2.0	√ ~ 5.5V, VS	S= 0V)
Parameter	Symbol	Conditions		MIN	TYP	MAX	Unit
	LCD contrast disabled, 1/4 bias		Турх0.95	VDD	Typx1.05	V	
		LCDCCR=00H		VDDx16/31			
			LCDCCR=01H		VDDx16/30	Typx1.1	
			LCDCCR=02H		VDDx16/29		
			LCDCCR=03H		VDDx16/28		
			LCDCCR=04H		VDDx16/27		
			LCDCCR=05H		VDDx16/26		
			LCDCCR=06H		VDDx16/25		
LCD Voltage V _{LC0}	V _{LC0}	LCD contrast enabled, 1/4 bias, No panel load	LCDCCR=07H	Typx0.9	VDDx16/24		.,
			LCDCCR=08H		VDDx16/23		V
			LCDCCR=09H		VDDx16/22		
			LCDCCR=0AH		VDDx16/21		
			LCDCCR=0BH		VDDx16/20		
			LCDCCR=0CH		VDDx16/19		
			LCDCCR=0DH		VDDx16/18		
			LCDCCR=0EH		VDDx16/17		
		LCDCCR=0FH		VDDx16/16		1	
	V _{LC1}	VDD=2.7V to 5.5V,		Typx0.9	3/4xVLC0	Typx1.1	
LCD Mid Bias Voltage(note) V _{LC3}	LCD clock = 0Hz, 1/4 bias, No panel load		Typx0.9	2/4xVLC0	Typx1.1	V	
			Typx0.9	1/4xVLC0	Typx1.1		
LCD Driver Output Impedance	R _{LO}	VLCD=3V, ILOAD=±10uA		-	5	10	k0
LCD Bias Dividing Resistor	R _{LCD}	$T_A = 25^{\circ}C$		40	60	80	kΩ

NOTE) It is middle output voltage when the VDD and the V_{LC0} node are connected.

7.9 DC Characteristics

Table 7-9 DC Characteristics

Table 7-9 DC Charac		(T _A	= -40°C ~ +85°	C, VDD= 1.8\	/ ~ 5.5V, VSS	S= 0V, f _{XIN} = 1	2MHz)
Parameter	Symbol	Condit	ions	MIN	TYP	MAX	Unit
han set I link Maltana	V _{IH1}	P0, P1, P5, RES	0.8VDD	_	VDD	V	
Input High Voltage	V _{IH2}	All input pins exc	ept V _{IH1}	0.7VDD	_	VDD	V
	V _{IL1}	P0, P1, P5, RESETB		_	_	0.2VDD	V
Input Low Voltage	V_{IL2}	All input pins exc	ept V _{IL1}	_	_	0.3VDD	V
Output High Voltage	V _{OH}	VDD= 4.5V, I _{OH} = All output ports;	-2mA,	VDD-1.0	_	-	V
Output Low Voltage	V _{OL1}	VDD=4.5V, I _{OL} = All output ports e		_	_	1.0	
	V _{OL2}	VDD= 4.5V, I _{OL} = P1		-	_	1.0	V
Input High Leakage Current	I _{IH}	All input ports		_	_	1	μA
Input Low Leakage Current	IIL	All input ports		-1	_	-	μA
	Reu	VI=0V, T _A = 25°C All Input ports	VDD=5.0V	25	50	100	kΩ
Pull-Up Resistor			VDD=3.0V	50	100	200	1/22
		VI=0V, T _A = 25°C RESETB	VDD=5.0V	150	250	400	kΩ
			VDD=3.0V	300	500	700	1122
OSC feedback resistor	R _{X1}	XIN= VDD, XOUT= VSS $T_A= 25^{\circ}C$, VDD= 5V		600	1200	2000	1.0
	R _{X2}	SXIN=VDD, SXOUT=VSS T _A = 25 °C ,VDD=5V		2500	5000	10000	kΩ

$(T_{A}$ = -40°C ~ +85°C, VDD= 1.8V ~ 5.5V, VSS= 0V, f _{XIN} = 12MHz)								
Parameter	Symbol	Conditio	MIN	TYP	MAX	Unit		
	I _{DD1} (RUN)	f _{XIN} = 12MHz, VDD= 5\	_	3.0	6.0	mA		
		f _{XIN} = 10MHz, VDD= 3\	_	2.2	4.4			
		f _{IRC} = 16MHz, VDD= 5\	-	3.0	6.0			
	I _{DD2} (IDLE)	f _{XIN} = 12MHz, VDD= 5\	-	2.0	4.0	mA		
		f _{XIN} = 10MHz, VDD= 3\	_	1.3	2.6			
Supply Current		f _{IRC} = 16MHz, VDD= 5V±10%		_	1.5	3.0		
		f _{XIN} = 32.768kHz	Sub RUN	_	100.0	180.0	μA	
	I _{DD4}	VDD= 3V±10% T _A = 25°C	Sub IDLE	_	8.0	16.0	μA	
	I _{DD5}	STOP, VDD= 5V±10%, T _A = 25°C		_	0.5	3.0	μΑ	

Table 7-9 DC Characteristics (Continued)

NOTES) 1. Where the f_{XIN} is an external main oscillator, f_{SUB} is an external sub oscillator, the f_{IRC} is an internal RC oscillator, and the fx is the selected system clock.

2. All supply current items don't include the current of an internal Watch-dog timer RC (WDTRC) oscillator and a peripheral block.

3. All supply current items include the current of the power-on reset (POR) block.

7.10 AC Characteristics

Table 7-10 AC Characteristics

					(T _A = -40°C ~ +85°C, VDD= 1.8V ~ 5.5V)				
Parameter	Symbol Conditions		MIN	TYP	MAX	Unit			
RESETB input low width	t _{RSL}	Input, VDD= 5V	10	_	_	μS			
Interrupt input high, low width	t _{INTH} , t _{INTL}	All interrupt, VDD= 5V	200	-	-				
External Counter Input High, Low Pulse Width	tECWH, tECWL	ECn, VDD = 5 V (n= 0, 1, 3)	200	-	-	nS			
External Counter Transition Time	tREC, tFEC	ECn, VDD = 5 V (n= 0, 1, 3)	20	-	_				

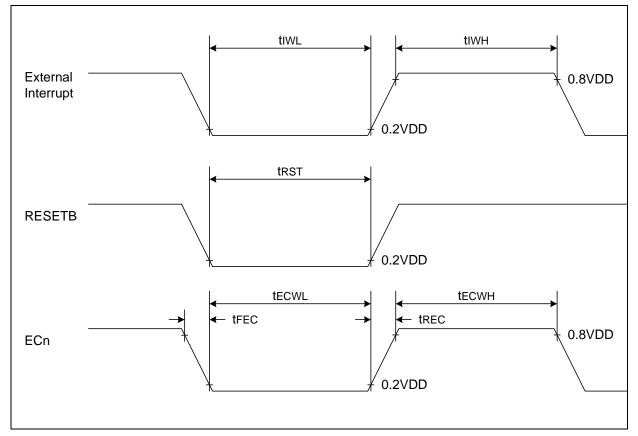
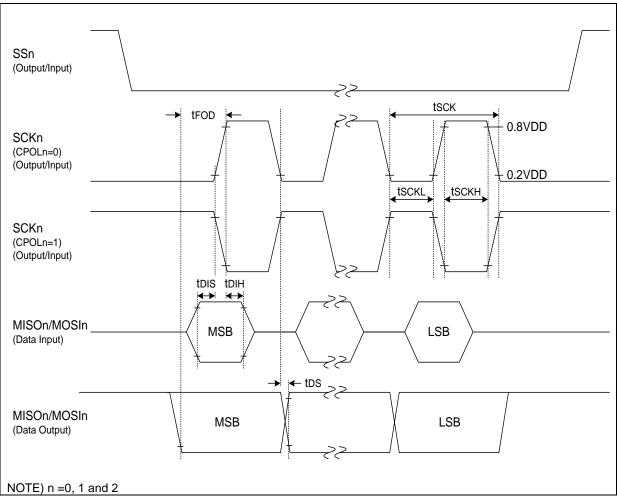



Figure 7.1 AC Timing

7.11 SPI0/1/2 Characteristics

Table 7-11 SPI0/1/2 Characteristics

			(T _A = -40°C	– +85°C, ∨	DD= 1.8V ·	– 5.5V)
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Output Clock Pulse Period	- tSCK	Internal SCK source	200	_	_	
Input Clock Pulse Period	ISON	External SCK source	200	-	-	
Output Clock High, Low Pulse Width	tSCKH,	Internal SCK source	70	-	_	
Input Clock High, Low Pulse Width	tSCKL	External SCK source	70	-	-	nS
First Output Clock Delay Time	tFOD	Internal/External SCK source	100	-	_	
Output Clock Delay Time	tDS	-	_	_	50	
Input Setup Time	tDIS	-	100	_	_	
Input Hold Time	tDIH	-	150	_	_	

Figure 7.2 SPI0/1/2 Timing

7.12 UART0/1 Characteristics

Table 7-12 UART0/1 Characteristics

	(T _A = -40°C ~ +85°C, VDD= 1.8V ~ 5.5V, f _{XIN} =11.					
Parameter	Symbol	MIN	TYP	MAX	Unit	
Serial port clock cycle time	t _{scк}	1250	t _{CPU} x 16	1650	nS	
Output data setup to clock rising edge	t _{S1}	590	t _{CPU} x 13	_	nS	
Clock rising edge to input data valid	t _{S2}	-	_	590	nS	
Output data hold after clock rising edge	t _{H1}	t _{СРU} - 50	t _{CPU}	_	nS	
Input data hold after clock rising edge	t _{H2}	0	_	_	nS	
Serial port clock High, Low level width	t _{HIGH} , t _{LOW}	470	t _{CPU} x 8	970	nS	

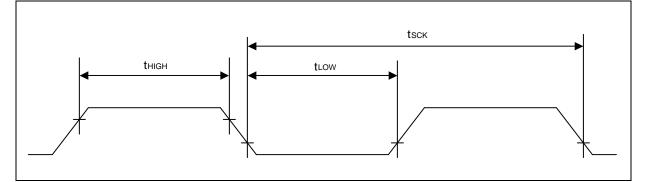


Figure 7.3 Waveform for UART0/1 Timing Characteristics

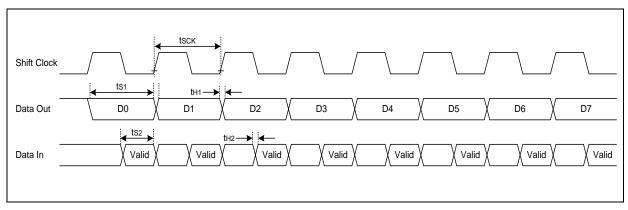


Figure 7.4 Timing Waveform for the UART0/1 Module

7.13 I2C0/1 Characteristics

Table 7-13 I2C0/1 Characteristics

			(T _A	= -40°C ~ +85°	°C, VDD= 1.8\	/ ~ 5.5V)
Parameter	Querra la sel	Standard Mode		High-Spe		
	Symbol	MIN	MAX	MIN	MAX	Unit
Clock frequency	tSCL	0	100	0	400	kHz
Clock High Pulse Width	tSCLH	4.0	-	0.6	_	
Clock Low Pulse Width	tSCLL	4.7	-	1.3	-	
Bus Free Time	tBF	4.7	-	1.3	_	
Start Condition Setup Time	tSTSU	4.7	-	0.6	-	
Start Condition Hold Time	tSTHD	4.0	-	0.6	-	μS
Stop Condition Setup Time	tSPSU	4.0	-	0.6	-	
Stop Condition Hold Time	tSPHD	4.0	-	0.6	_	
Output Valid from Clock	tVD	0	-	0	_	
Data Input Hold Time	tDIH	0	-	0	1.0	1
Data Input Setup Time	tDIS	250	-	100	-	nS

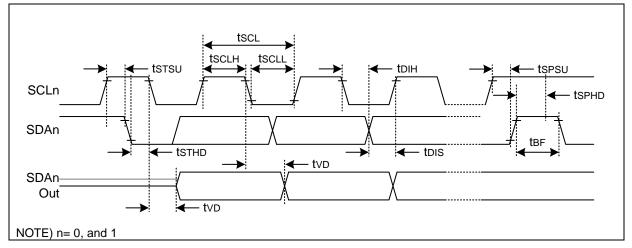


Figure 7.5 I2C0/1 Timing

7.14 Data Retention Voltage in Stop Mode

Table 7-1	14 Data	Retention	Voltage in	Stop Mode
	14 Dala	Netention	vonage m	Stop Mode

	5		(T _A = -40°C	~ +85°C, `	/DD= 1.8V	~ 5.5V)
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
Data retention supply voltage	V _{dddr}	_	1.8	_	5.5	V
Data retention supply current	I _{DDDR}	VDDR= 1.8V, (T _A = 25°C), Stop mode	-	_	1	μA

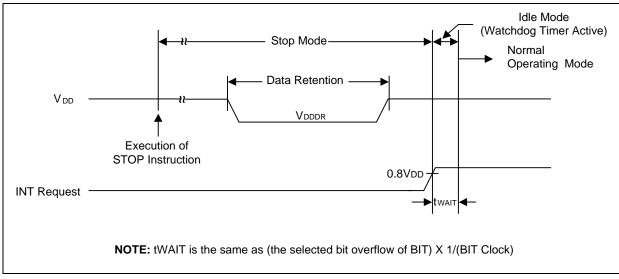


Figure 7.6 Stop Mode Release Timing when Initiated by an Interrupt

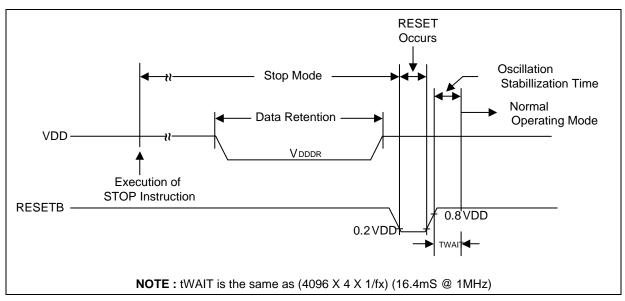


Figure 7.7 Stop Mode Release Timing when Initiated by RESETB

7.15 Internal Flash Rom Characteristics

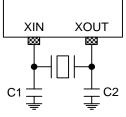
Table 7-15 Internal Flash Rom Characteristics

		(T _A = -40	°C ~ +85°C	, VDD= 1.8	V ~ 5.5V, V	SS= 0V)
Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Sector Write Time	t _{FSW}	_	-	2.5	2.7	
Sector Erase Time	t _{FSE}	_	-	2.5	2.7	mS
Hard-Lock Time	t _{FHL}	_	_	2.5	2.7	
Page Buffer Reset Time	t _{FBR}	-	_	-	5	μS
Flash Programming Frequency	f _{PGM}	_	0.4	_	_	MHz
Endurance of Write/Erase	NFWE	_	_	_	100,000	Times

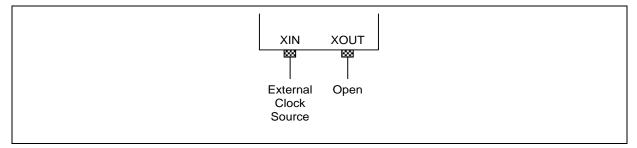
NOTE) During a flash operation, SCLK[1:0] of SCCR must be set to "00" or "01" (INT-RC OSC or Main X-TAL for system clock).

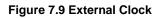
7.16 Input/Output Capacitance

Table 7-16 Input/Output Capacitance


					· 105 0, vi	
Parameter	Symbol	Condition	MIN	TYP	MAX	Unit
Input Capacitance	C _{IN}	fx= 1MHz				
Output Capacitance	C _{OUT}	Unmeasured pins are	-	-	10	pF
I/O Capacitance	C _{IO}	connected to VSS				

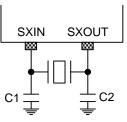
(T_A= -40°C ~ +85°C, VDD= 0V)




7.17 Main Clock Oscillator Characteristics

		(7	Т _А = -40°С ~	· +85°C, VI	DD= 1.8V -	~ 5.5V)
Oscillator	Parameter	Condition	MIN	TYP	MAX	Unit
		1.8V – 5.5V	0.4	_	4.2	
Crystal	Main oscillation frequency	2.7V – 5.5V	0.4	_	10.0	MHz
		3.0V – 5.5V	0.4	_	12.0	
	Main oscillation frequency	1.8V – 5.5V	0.4	_	4.2	
Ceramic Oscillator		2.7V – 5.5V	0.4	_	10.0	MHz
		3.0V – 5.5V	0.4	-	12.0	
	XIN input frequency	1.8V – 5.5V	0.4	-	4.2	
External Clock		2.7V – 5.5V	0.4	_	10.0	MHz
		3.0V – 5.5V	0.4	_	12.0	

Figure 7.8 Crystal/Ceramic Oscillator



7.18 Sub Clock Oscillator Characteristics

Table 7-18 Sub Clock Oscillator Characteristics

		Γ)	_A = -40°C ~	+85°C, VI	DD= 1.8V -	~ 5.5V)
Oscillator	Parameter	Condition	MIN	TYP	MAX	Unit
Crystal	Sub oscillation frequency	1.8V – 5.5V	32	32.768	38	kHz
External Clock	SXIN input frequency	1.00 - 0.00	32	-	100	kHz

Figure 7.10 Crystal Oscillator

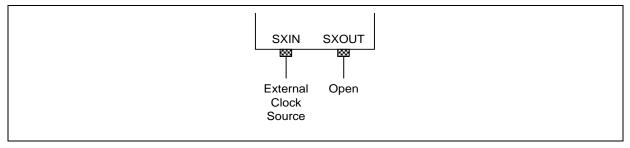


Figure 7.11 External Clock

7.19 Main Oscillation Stabilization Characteristics

Table 7-19 Main	Oscillation	Stabilization	Characteristics
			•

		(T _A = -40°	°C ~ +85°C,	VDD= 1.8V -	~ 5.5V)
Oscillator	Parameter	MIN	TYP	MAX	Unit
Crystal	fx > 1MHz Oscillation stabilization occurs when VDD	_	_	60	mS
Ceramic	is equal to the minimum oscillator voltage range.	_	-	10	mS
External Clock	$f_{XIN} = 0.4$ to 12MHz XIN input high and low width (t_{XH} , t_{XL})	42	_	1250	nS

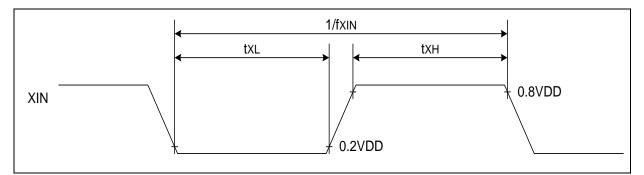


Figure 7.12 Clock Timing Measurement at XIN

7.20 Sub Oscillation Characteristics

Table 7-20 Sub Oscillation Stabilization Characteristics

		(T _A = -40°	°C ~ +85°C, '	VDD= 1.8V -	- 5.5V)
Oscillator	Parameter	MIN	TYP	MAX	Unit
Crystal	_	-	-	10	S
External Clock	SXIN input high and low width (t_{XH}, t_{XL})	5	_	15	μS

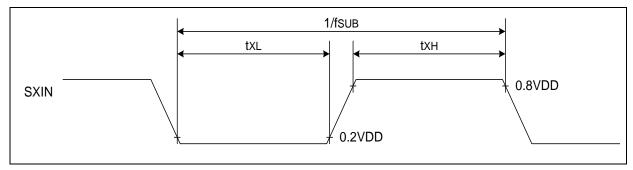


Figure 7.13 Clock Timing Measurement at SXIN

7.21 Operating Voltage Range

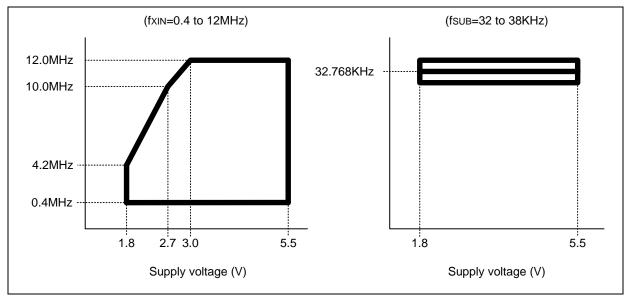


Figure 7.14 Operating Voltage Range

7.22 Recommended Circuit and Layout

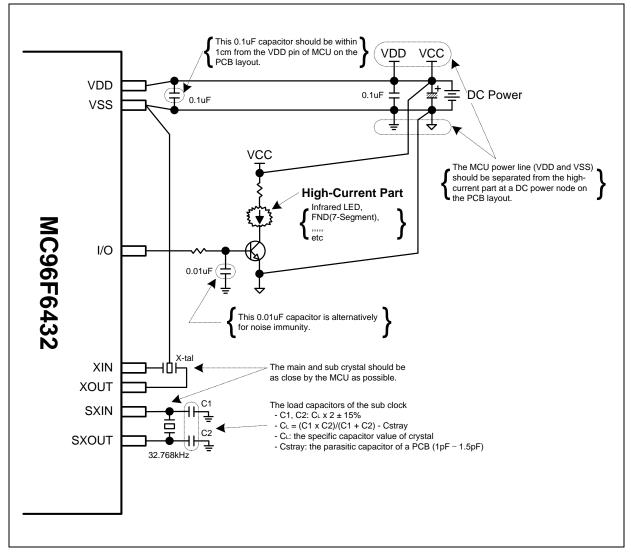
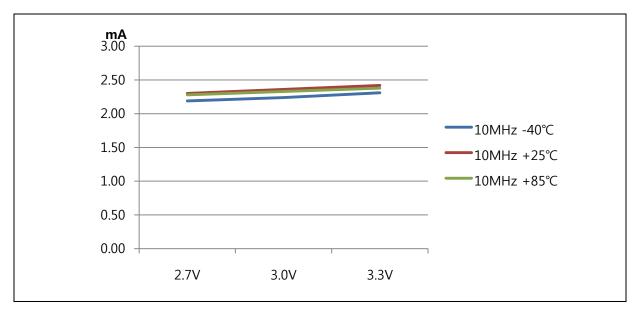



Figure 7.15 Recommended Circuit and Layout

7.23 Typical Characteristics

These graphs and tables provided in this section are only for design guidance and are not tested or guaranteed. In graphs or tables some data are out of specified operating range (e.g. out of specified VDD range). This is only for information and devices are guaranteed to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

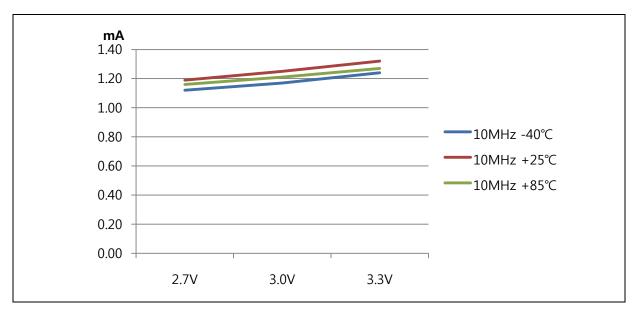


Figure 7.17 IDLE (IDD2) Current

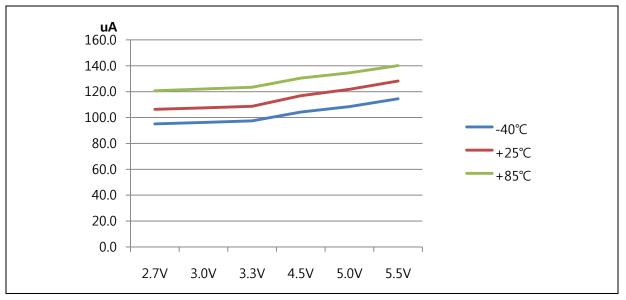


Figure 7.18 SUB RUN (IDD3) Current

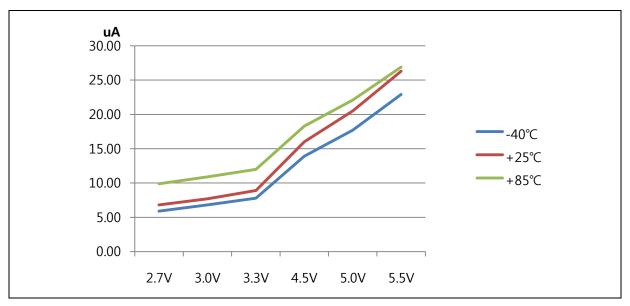


Figure 7.19 SUB IDLE (IDD4) Current

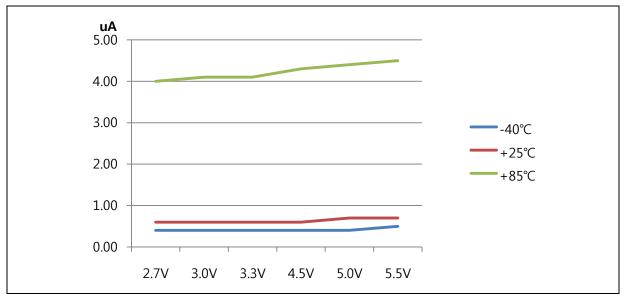


Figure 7.20 STOP (IDD5) Current

8. Memory

The MC96F6432 addresses two separate address memory stores: Program memory and Data memory. The logical separation of Program and Data memory allows Data memory to be accessed by 8-bit addresses, which makes the 8-bit CPU access the data memory more rapidly. Nevertheless, 16-bit Data memory addresses can also be generated through the DPTR register.

MC96F6432 provides on-chip 32k bytes of the ISP type flash program memory, which can be read and written to. Internal data memory (IRAM) is 256 bytes and it includes the stack area. External data memory (XRAM) is 768 bytes and it includes 27 bytes of LCD display RAM.

8.1 Program Memory

A 16-bit program counter is capable of addressing up to 64k bytes, but this device has just 32k bytes program memory space.

Figure 8-1 shows the map of the lower part of the program memory. After reset, the CPU begins execution from location 0000H. Each interrupt is assigned a fixed location in program memory. The interrupt causes the CPU to jump to that location, where it commences execution of the service routine. External interrupt 11, for example, is assigned to location 000BH. If external interrupt 11 is going to be used, its service routine must begin at location 000BH. If the interrupt is not going to be used, its service location is available as general purpose program memory. If an interrupt service routine is short enough (as is often the case in control applications), it can reside entirely within that 8 byte interval. Longer service routines can use a jump instruction to skip over subsequent interrupt locations, if other interrupts are in use.

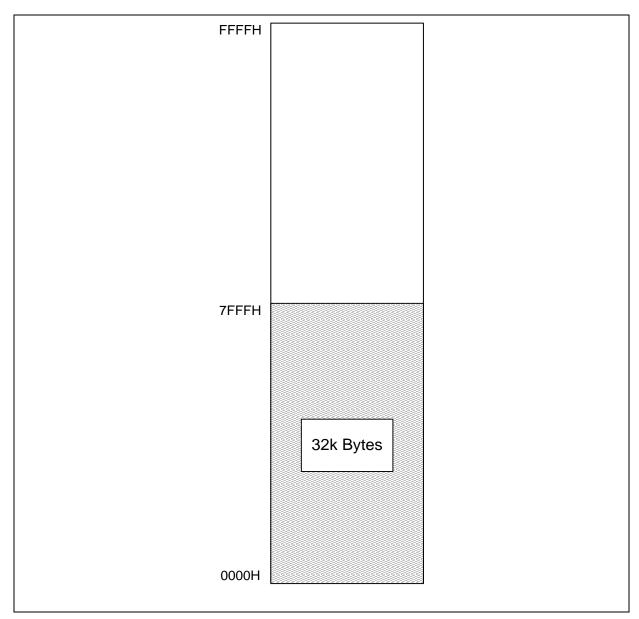


Figure 8.1 Program Memory

- 32k Bytes Including Interrupt Vector Region

8.2 Data Memory

Figure 8-2 shows the internal data memory space available.

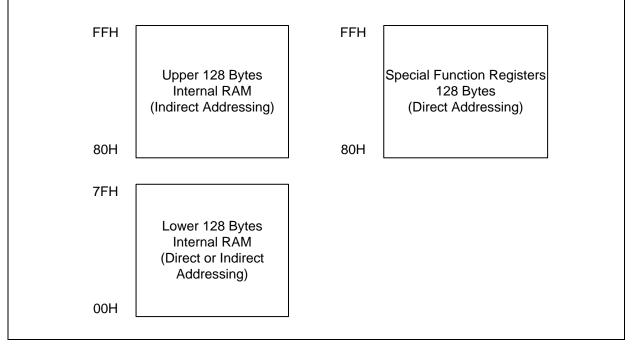


Figure 8.2 Data Memory Map

The internal data memory space is divided into three blocks, which are generally referred to as the lower 128 bytes, upper 128 bytes, and SFR space.

Internal data memory addresses are always one byte wide, which implies an address space of only 256 bytes. However, in fact the addressing modes for internal RAM can accommodate up to 384 bytes by using a simple trick. Direct addresses higher than 7FH access one memory space and indirect addresses higher than 7FH access a different memory space. Thus Figure 8-2 shows the upper 128 bytes and SFR space occupying the same block of addresses, 80H through FFH, although they are physically separate entities.

The lower 128 bytes of RAM are present in all 8051 devices as mapped in Figure 8-3. The lowest 32 bytes are grouped into 4 banks of 8 registers. Program instructions call out these registers as R0 through R7. Two bits in the Program Status Word select which register bank is in use. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing.

The next 16 bytes above the register banks form a block of bit-addressable memory space. The 8051 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00H through 7FH.

All of the bytes in the lower 128 bytes can be accessed by either direct or indirect addressing. The upper 128 bytes RAM can only be accessed by indirect addressing. These spaces are used for data RAM and stack.

	/ 7FH]	7F	7E	7D	7C	7B	7A	79	78
				77	76	75	74	73	72	71	70
				6F	6E	6D	6C	6B	6A	69	68
				67	66	65	64	63	62	61	60
80 Bytes	Į	General Purpose		5F	5E	5D	5C	5B	5A	59	58
00 _) 100		Register		57	56	55	54	53	52	51	50
				4F	4E	4D	4C	4B	4A	49	48
				47	46	45	44	43	42	41	40
				3F	3E	3D	3C	3B	3A	39	38
	∖ 30H (2FH		-1. ⁻	37 2F	36 2E	35 2D	34 2C	33 2B	32 2A	31 29	30 28
				∠r 27	2E 26	2D 25	20	2Б 23	2A 22	29	20
16 Bytes)	Bit Addressable		27 1F	20 1E	25 1D	24 1C	23 1B	22 1A	19	18
(128bits)		Dit Addressable		17	16	15	14	13	12	11	10
	20H			0F	0E	0D		0B	0A	09	08
	(1FH			07	06	05	04	03	02	01	00
8 Bytes	/ 18H	Register Bank 3 (8 Bytes)								1	
8 Bytes	17H 10H	Register Bank 2 (8 Bytes)									
8 Bytes	↓ 0FH	Register Bank 1				R					
,	08H	(8 Bytes)				R					
	(07H		-1··			R					
8 Bytes	$\langle $	Register Bank 0				R4					
	Соон	(8 Bytes)				R: R:					
				<u> </u>		 R					
						R					
			· · · .			1/1	<u> </u>				

Figure 8.3 Lower 128 Bytes RAM

8.3 XRAM Memory

MC96F6432 has 768 bytes XRAM. This area has no relation with RAM/FLASH. It can be read and written to through SFR with 8-bit unit.

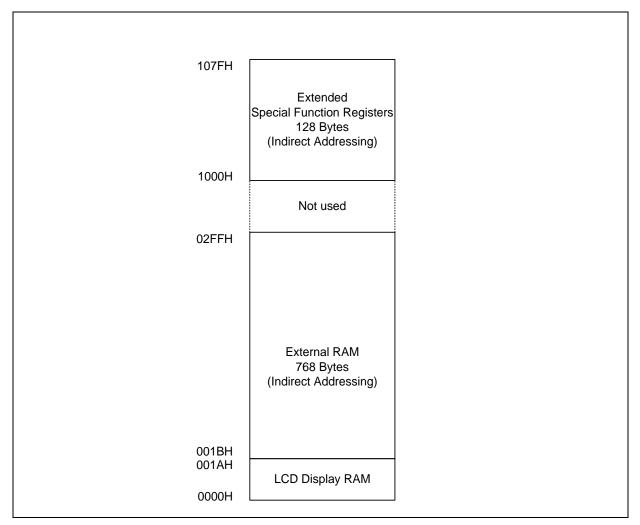


Figure 8.4 XDATA Memory Area

Table 8-1 SFR Map Summary

-

Reserved M8051 compatible

	00H/8H ⁽¹⁾	01H/9H	02H/0AH	03H/0BH	04H/0CH	05H/0DH	06H/0EH	07H/0FH
0F8H	IP1	-	FSADRH	FSADRM	FSADRL	FIDR	FMCR	P5FSR
0F0H	В	USI1ST1	USI1ST2	USI1BD	USI1SDHR	USI1DR	USI1SCLR	USI1SCHR
0E8H	RSTFR	USI1CR1	USI1CR2	USI1CR3	USI1CR4	USI1SAR	P3FSR	P4FSR
0E0H	ACC	USI0ST1	USI0ST2	USI0BD	USI0SDHR	USI0DR	USI0SCLR	USI0SCHR
0D8H	LVRCR	USI0CR1	USI0CR2	USI0CR3	USI0CR4	USI0SAR	P0DB	P15DB
0D0H	PSW	P5IO	P0FSRL	P0FSRH	P1FSRL	P1FSRH	P2FSRL	P2FSRH
0C8H	OSCCR	P4IO	-	Ι	-	-	-	_
0C0H	EIFLAG0	P3IO	T2CRL	T2CRH	T2ADRL	T2ADRH	T2BDRL	T2BDRH
0B8H	IP	P2IO	T1CRL	T1CRH	T1ADRL	T1ADRH	T1BDRL	T1BDRH
0B0H	P5	P1IO	T0CR	TOCNT	T0DR/ T0CDR	SPICR	SPIDR	SPISR
0A8H	IE	IE1	IE2	IE3	P0PU	P1PU	P2PU	P3PU
0A0H	P4	P0IO	EO	P4PU	EIPOL0L	EIPOL0H	EIFLAG1	EIPOL1
98H	P3	LCDCRL	LCDCRH	LCDCCR	ADCCRH	ADCCRH	ADCDRL	ADCDRH
90H	P2	P0OD	P1OD	P2OD	P4OD	P5PU	WTCR	BUZCR
88H	P1	WTDR/ WTCNT	SCCR	BITCR	BITCNT	WDTCR	WDTDR/ WDTCNT	BUZDR
80H	P0	SP	DPL	DPH	DPL1	DPH1	LVICR	PCON

NOTE) These registers are bit-addressable.

Reserved

-

Table 8-2 SFR Map Summary

	00H/8H ⁽¹⁾	01H/9H	02H/0AH	03H/0BH	04H/0CH	05H/0DH	06H/0EH	07H/0FH
1078H	_	-	-	-	-	-	-	-
1070H	_	_	_	_	_	_	_	-
1068H	_	_	_	_	_	_	_	_
1060H	_	_	_	_	_	_	_	_
1058H	-	-	_	-	-	-	-	-
1050H	_	-	_	-	-	-	-	-
1048H	_	-	_	_	_	-	_	-
1040H	-	-	-	-	-	-	-	-
1038H	-	-	-	-	-	-	-	-
1030H	_	-	_	-	_	-	_	-
1028H	-	-	-	-	-	-	-	-
1020H	-	-	-	-	-	-	-	-
1018H	_	-	_	-	-	-	-	-
1010H	T4DLYA	T4DLYB	T4DLYC	T4DR	T4CAPR	T4CNT	_	-
1008H	T4PPRL	T4PPRH	T4ADRL	T4ADRH	T4BDRL	T4BDRH	T4CDRL	T4CDRH
100H	T3CR	T3CNT/ T3DR/ T3CAPR	T4CR	T4PCR1	T4PCR2	T4PCR3	T4ISR	T4IMSK

NOTE) These registers are bit-addressable.

8.4.2 SFR Map

Address	Function	Symbol	R/W				@R	eset			1
Audress	Function	Symbol		7	6	5	4	3	2	1	0
80H	P0 Data Register	P0	R/W	0	0	0	0	0	0	0	0
81H	Stack Pointer	SP	R/W	0	0	0	0	0	1	1	1
82H	Data Pointer Register Low	DPL	R/W	0	0	0	0	0	0	0	0
83H	Data Pointer Register High	DPH	R/W	0	0	0	0	0	0	0	0
84H	Data Pointer Register Low 1	DPL1	R/W	0	0	0	0	0	0	0	0
85H	Data Pointer Register High 1	DPH1	R/W	0	0	0	0	0	0	0	0
86H	Low Voltage Indicator Control Register	LVICR	R/W	_	_	0	0	0	0	0	0
87H	Power Control Register	PCON	R/W	0	-	_	I	0	0	0	0
88H	P1 Data Register	P1	R/W	0	0	0	0	0	0	0	0
89H	Watch Timer Data Register	WTDR	W	0	1	1	1	1	1	1	1
090	Watch Timer Counter Register	WTCNT	R	-	0	0	0	0	0	0	0
8AH	System and Clock Control Register	SCCR	R/W	_	_	_	I	_	_	0	0
8BH	Basic Interval Timer Control Register	BITCR	R/W	0	0	0	I	0	0	0	1
8CH	Basic Interval Timer Counter Register	BITCNT	R	0	0	0	0	0	0	0	0
8DH	Watch Dog Timer Control Register	WDTCR	R/W	0	0	0	Ι	_	_	0	0
0511	Watch Dog Timer Data Register	WDTDR	W	1	1	1	1	1	1	1	1
8EH	Watch Dog Timer Counter Register	WDTCNT	R	0	0	0	0	0	0	0	0
8FH	BUZZER Data Register	BUZDR	R/W	1	1	1	1	1	1	1	1
90H	P2 Data Register	P2	R/W	0	0	0	0	0	0	0	0
91H	P0 Open-drain Selection Register	P0OD	R/W	0	0	0	0	0	0	0	0
92H	P1 Open-drain Selection Register	P10D	R/W	0	0	0	0	0	0	0	0
93H	P2 Open-drain Selection Register	P2OD	R/W	0	0	0	0	0	0	0	0
94H	P4 Open-drain Selection Register	P4OD	R/W	_	_	_	I	0	0	0	0
95H	P5 Pull-up Resistor Selection Register	P5PU	R/W	_	_	0	0	0	0	0	0
96H	Watch Timer Control Register	WTCR	R/W	0	_	_	0	0	0	0	0
97H	BUZZER Control Register	BUZCR	R/W	_	_	_	Ι	_	0	0	0
98H	P3 Data Register	P3	R/W	0	0	0	0	0	0	0	0
99H	LCD Driver Control Low Register	LCDCRL	R/W	_	_	0	0	0	0	0	0
9AH	LCD Driver Control High Register	LCDCRH	R/W	_	_	_	0	_	_	0	0
9BH	LCD Contrast Control register	LCDCCR	R/W	0	_	_	Ι	0	0	0	0
9CH	A/D Converter Control Low Register	ADCCRL	R/W	0	0	0	0	0	0	0	0
9DH	A/D Converter Control High Register	ADCCRH	R/W	0	_	0	0	0	0	0	0
9EH	A/D Converter Data Low Register	ADCDRL	R	х	х	х	х	х	х	х	х
9FH	A/D Converter Data High Register	ADCDRH	R	х	х	х	х	х	х	х	х

	–		DAA				@R	eset			
Address	Function	Symbol	R/W	7	6	5	4	3	2	1	0
A0H	P4 Data Register	P4	R/W	-	Ι	-	-	0	0	0	0
A1H	P0 Direction Register	P0IO	R/W	0	0	0	0	0	0	0	0
A2H	Extended Operation Register	EO	R/W	-	-	-	0	-	0	0	0
A3H	P4 Pull-up Resistor Selection Register	P4PU	R/W	-	Ι	-	—	0	0	0	0
A4H	External Interrupt Polarity 0 Low Register	EIPOL0L	R/W	0	0	0	0	0	0	0	0
A5H	External Interrupt Polarity 0 High Register	EIPOL0H	R/W	0	0	0	0	0	0	0	0
A6H	External Interrupt Flag 1 Register	EIFLAG1	R/W	0	0	0	0	0	0	0	0
A7H	External Interrupt Polarity 1 Register	EIPOL1	R/W	0	0	0	0	0	0	0	0
A8H	Interrupt Enable Register	IE	R/W	0	Ι	0	0	0	0	0	0
A9H	Interrupt Enable Register 1	IE1	R/W	-	Ι	0	0	0	0	-	0
AAH	Interrupt Enable Register 2	IE2	R/W	_	I	0	0	0	0	0	0
ABH	Interrupt Enable Register 3	IE3	R/W	-	Ι	0	0	0	0	0	0
ACH	P0 Pull-up Resistor Selection Register	P0PU	R/W	0	0	0	0	0	0	0	0
ADH	P1 Pull-up Resistor Selection Register	P1PU	R/W	0	0	0	0	0	0	0	0
AEH	P2 Pull-up Resistor Selection Register	P2PU	R/W	0	0	0	0	0	0	0	0
AFH	P3 Pull-up Resistor Selection Register	P3PU	R/W	0	0	0	0	0	0	0	0
B0H	P5 Data Register	P5	R/W	_	I	0	0	0	0	0	0
B1H	P1 Direction Register	P1IO	R/W	0	0	0	0	0	0	0	0
B2H	Timer 0 Control Register	T0CR	R/W	0	Ι	0	0	0	0	0	0
B3H	Timer 0 Counter Register	TOCNT	R	0	0	0	0	0	0	0	0
B4H	Timer 0 Data Register	T0DR	R/W	1	1	1	1	1	1	1	1
D411	Timer 0 Capture Data Register	T0CDR	R	0	0	0	0	0	0	0	0
B5H	SPI 2 Control Register	SPICR	R/W	0	0	0	0	0	0	0	0
B6H	SPI 2 Data Register	SPIDR	R/W	0	0	0	0	0	0	0	0
B7H	SPI 2 Status Register	SPISR	R/W	0	0	0	_	0	0	_	-
B8H	Interrupt Priority Register	IP	R/W	_	I	0	0	0	0	0	0
B9H	P2 Direction Register	P2IO	R/W	0	0	0	0	0	0	0	0
BAH	Timer 1 Control Low Register	T1CRL	R/W	0	0	0	0	_	0	0	0
BBH	Timer 1 Counter High Register	T1CRH	R/W	0	Ι	0	0	-	-	-	0
BCH	Timer 1 A Data Low Register	T1ADRL	R/W	1	1	1	1	1	1	1	1
BDH	Timer 1 A Data High Register	T1ADRH	R/W	1	1	1	1	1	1	1	1
BEH	Timer 1 B Data Low Register	T1BDRL	R/W	1	1	1	1	1	1	1	1
BFH	Timer 1 BData High Register	T1BDRH	R/W	1	1	1	1	1	1	1	1

	– <i>i</i>	o	DAA				@R	eset			
Address	Function	Symbol	R/W	7	6	5	4	3	2	1	0
C0H	External Interrupt Flag 0 Register	EIFLAG0	R/W	0	0	0	0	0	0	0	0
C1H	P3 Direction Register	P3IO	R/W	0	0	0	0	0	0	0	0
C2H	Timer 2 Control Low Register	T2CRL	R/W	0	0	0	0	-	0	-	0
СЗН	Timer 2 Control High Register	T2CRH	R/W	0	-	0	0	-	-	-	0
C4H	Timer 2 A Data Low Register	T2ADRL	R/W	1	1	1	1	1	1	1	1
C5H	Timer 2 A Data High Register	T2ADRH	R/W	1	1	1	1	1	1	1	1
C6H	Timer 2 B Data Low Register	T2BDRL	R/W	1	1	1	1	1	1	1	1
C7H	Timer 2 BData High Register	T2BDRH	R/W	1	1	1	1	1	1	1	1
C8H	Oscillator Control Register	OSCCR	R/W	I	_	0	0	1	0	0	0
C9H	P4 Direction Register	P4IO	R/W	I	_	_	_	0	0	0	0
CAH	Reserved	_	_					_			
CBH	Reserved	_	_					_			
ССН	Reserved	-	_					_			
CDH	Reserved	_	_					_			
CEH	Reserved	_	_					_			
CFH	Reserved	-	-					_			
D0H	Program Status Word Register	PSW	R/W	0	0	0	0	0	0	0	0
D1H	P5 Direction Register	P5IO	R/W	Ι	-	0	0	0	0	0	0
D2H	P0 Function Selection Low Register	P0FSRL	R/W	I	0	0	0	0	0	0	0
D3H	P0 Function Selection High Register	P0FSRH	R/W	Ι	-	0	0	0	0	0	0
D4H	P1 Function Selection Low Register	P1FSRL	R/W	0	0	0	0	0	0	0	0
D5H	P1 Function Selection High Register	P1FSRH	R/W	0	0	0	0	0	0	0	0
D6H	P2 Function Selection Low Register	P2FSRL	R/W	I	_	0	0	0	0	0	0
D7H	P2 Function Selection High Register	P2FSRH	R/W	I	_	_	_	0	0	0	0
D8H	Low Voltage Reset Control Register	LVRCR	R/W	0	_	_	0	0	0	0	0
D9H	USI0 Control Register 1	USI0CR1	R/W	0	0	0	0	0	0	0	0
DAH	USI0 Control Register 2	USI0CR2	R/W	0	0	0	0	0	0	0	0
DBH	USI0 Control Register 3	USI0CR3	R/W	0	0	0	0	0	0	0	0
DCH	USI0 Control Register 4	USI0CR4	R/W	0	_	-	0	0	-	0	0
DDH	USI0 Slave Address Register	USI0SAR	R/W	0	0	0	0	0	0	0	0
DEH	P0 Debounce Enable Register	P0DB	R/W	0	0	0	0	0	0	0	0
DFH	P1/P5 Debounce Enable Register	P15DB	R/W	-	_	0	0	0	0	0	0

	–	a	5.44				@R	eset			
Address	Function	Symbol	R/W	7	6	5	4	3	2	1	0
E0H	Accumulator Register	ACC	R/W	0	0	0	0	0	0	0	0
E1H	USI0 Status Register 1	USI0ST1	R/W	0	0	0	0	-	0	0	0
E2H	USI0 Status Register 2	USI0ST2	R	0	0	0	0	0	0	0	0
E3H	USI0 Baud Rate Generation Register	USI0BD	R/W	1	1	1	1	1	1	1	1
E4H	USI0 SDA Hold Time Register	USI0SHDR	R/W	0	0	0	0	0	0	0	1
E5H	USI0 Data Register	USI0DR	R/W	0	0	0	0	0	0	0	0
E6H	USI0 SCL Low Period Register	USI0SCLR	R/W	0	0	1	1	1	1	1	1
E7H	USI0 SCL High Period Register	USI0SCHR	R/W	0	0	1	1	1	1	1	1
E8H	Reset Flag Register	RSTFR	R/W	1	х	0	0	х	_	_	-
E9H	USI1 Control Register 1	USI1CR1	R/W	0	0	0	0	0	0	0	0
EAH	USI1 Control Register 2	USI1CR2	R/W	0	0	0	0	0	0	0	0
EBH	USI1 Control Register 3	USI1CR3	R/W	0	0	0	0	0	0	0	0
ECH	USI1 Control Register 4	USI1CR4	R/W	0	_	-	0	0	_	0	0
EDH	USI1 Slave Address Register	USI1SAR	R/W	0	0	0	0	0	0	0	0
EEH	P3 Function Selection Register	P3FSR	R/W	0	0	0	0	0	0	0	0
EFH	P4 Function Selection Register	P4FSR	R/W	-	0	0	0	0	0	0	0
F0H	B Register	В	R/W	0	0	0	0	0	0	0	0
F1H	USI1 Status Register 1	USI1ST1	R/W	0	0	0	0	-	0	0	0
F2H	USI1 Status Register 2	USI1ST2	R	0	0	0	0	0	0	0	0
F3H	USI1 Baud Rate Generation Register	USI1BD	R/W	1	1	1	1	1	1	1	1
F4H	USI1 SDA Hold Time Register	USI1SHDR	R/W	0	0	0	0	0	0	0	1
F5H	USI1 Data Register	USI1DR	R/W	0	0	0	0	0	0	0	0
F6H	USI1 SCL Low Period Register	USI1SCLR	R/W	0	0	1	1	1	1	1	1
F7H	USI1 SCL High Period Register	USI1SCHR	R/W	0	0	1	1	1	1	1	1
F8H	Interrupt Priority Register 1	IP1	R/W	-	_	0	0	0	0	0	0
F9H	Reserved	-	_				-	_			
FAH	Flash Sector Address High Register	FSADRH	R/W	_	_	-	_	0	0	0	0
FBH	Flash Sector Address Middle Register	FSADRM	R/W	0	0	0	0	0	0	0	0
FCH	Flash Sector Address Low Register	FSADRL	R/W	0	0	0	0	0	0	0	0
FDH	Flash Identification Register	FIDR	R/W	0	0	0	0	0	0	0	0
FEH	Flash Mode Control Register	FMCR	R/W	0	_	-	-	-	0	0	0
FFH	P5 Function Selection Register	P5FSR	R/W	-	—	0	0	0	0	0	0

							@R	eset			
Address	Function	Symbol	R/W	7	6	5	4	3	2	1	0
1000H	Timer 3 Control Register	T3CR	R/W	0	-	0	0	0	0	0	0
	Timer 3 Counter Register	T3CNT	R	0	0	0	0	0	0	0	0
1001H	Timer 3 Data Register	T3DR	W	1	1	1	1	1	1	1	1
	Timer 3 Capture Data Register	T3CAPR	R	0	0	0	0	0	0	0	0
1002H	Timer 4 Control Register	T4CR	R/W	0	0	0	0	0	0	0	0
1003H	Timer 4 PWM Control Register 1	T4PCR1	R/W	0	0	0	0	0	0	0	0
1004H	Timer 4 PWM Control Register 2	T4PCR2	R/W	0	0	0	0	0	0	0	0
1005H	Timer 4 PWM Control Register 3	T4PCR3	R/W	_	0	0	0	_	-	_	-
1006H	Timer 4 Interrupt Status Register	T4ISR	R/W	0	0	0	0	0	I	_	-
1007H	Timer 4 Interrupt Mask Register	T4MSK	R/W	0	0	0	0	0	I	_	_
1008H	Timer 4 PWM Period Low Register	T4PPRL	R/W	1	1	1	1	1	1	1	1
1009H	Timer 4 PWM Period High Register	T4PPRH	R/W	_	_	Ι	_	_		0	0
100AH	Timer 4 PWM A Duty Low Register	T4ADRL	R/W	0	1	1	1	1	1	1	1
100BH	Timer 4 PWM A Duty High Register	T4ADRH	R/W	_	_	Ι	_	_	I	0	0
100CH	Timer 4 PWM B Duty Low Register	T4BDRL	R/W	0	1	1	1	1	1	1	1
100DH	Timer 4 PWM B Duty High Register	T4BDRH	R/W	_	_	Ι	_	_		0	0
100EH	Timer 4 PWM C Duty Low Register	T4CDRL	R/W	0	1	1	1	1	1	1	1
100FH	Timer 4 PWM C Duty High Register	T4CDRH	R/W	_	_	Ι	_	_	I	0	0
1010H	Timer 4 PWM A Delay Register	T4DLYA	R/W	0	0	0	0	0	0	0	0
1011H	Timer 4 PWM B Delay Register	T4DLYB	R/W	0	0	0	0	0	0	0	0
1012H	Timer 4 PWM C Delay Register	T4DLYC	R/W	0	0	0	0	0	0	0	0
1013H	Timer 4 Data Register	T4DR	R/W	1	1	1	1	1	1	1	1
1014H	Timer 4 Capture Data Register	T4CAPR	R	0	0	0	0	0	0	0	0
1015H	Timer 4 Counter Register	T4CNT	R	0	0	0	0	0	0	0	0
											-
107FH	Reserved	_	-				-	_			-

8.4.3 Compiler Compatible SFR

7	6	5	4	3	2	1	0
			AC	x			
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value :
	ACC		Accumulator				
8 Registe	r) : F0H						
7	6	5	4	3	2	1	0
			E	3			
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value :
	В		B Register				
	_		Britegiotor				
Stack Do	ointer) : 81H						
7	6	5	4	3	2	1	0
-	0	J	- Si		۷.		U
RW	RW	RW	RW	RW	RW	RW	RW
R/VV	RVVV	R/VV	RVVV	RVVV	RVVV	RVVV	Initial value :
	0.5						
	SP		Stack Pointer				
(D (D							
	ointer Register						
7	6	5	4	3	2	1	0
	8		DF				
RW	RW	RW	RW	R/W	RW	RW	RW
							Initial value :
	DPL		Data Pointer Lo	ow			
l (Data Po	ointer Register	High) : 83	н				
7	6	5	4	3	2	1	0
			DF	Н			
	DIN	RW	RW	RW	RW	RW	RW
RW	RW	RVVV		1.000	1 V V V	1	1 V V V

	6	5	4	3	2	1	0
			DP	Ľ1			
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00
	DPI	L1	Data Pointer L	ow 1			
PH1 (Data F	Pointer Regis	ter High 1) :	85H				
7	6	5	4	3	2	1	0
			DP	H1			
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00
	DPI	H1	Data Pointer H	ligh 1			
	DPI	H1	Data Pointer H	ligh 1			
W (Progra	DPI m Status Wo			ligh 1			
W (Progra 7				ligh 1 3	2	1	0
	m Status Wo	rd Register)	: D0H	-	2 OV	1 F1	0 P
7	m Status Wo 6	rd Register) 5	: D0H 4	3			
7 CY	m Status Wo 6 AC	rd Register) 5 F0	: D0H 4 RS1	3 RS0	OV	F1	P RW
7 CY	m Status Wo 6 AC	rd Register) 5 F0	: D0H 4 RS1	3 RS0	OV	F1	P RW
7 CY	m Status Wo 6 AC RW	rd Register) 5 F0	: D0H 4 RS1 RW	3 RS0 RW	OV	F1	P RW
7 CY	m Status Wo 6 AC RW CY	rd Register) 5 F0	: DOH 4 RS1 RW Carry Flag	3 RS0 RW	OV RW	F1	P RW
7 CY	m Status Wo 6 AC RW CY AC	rd Register) 5 F0 RW	: DOH 4 RS1 RW Carry Flag Auxiliary Carry	3 RS0 RW Flag se User-Defin	OV RW	F1	Р
7 CY	m Status Wo 6 AC RW CY AC F0	rd Register) 5 F0 RW	: DOH 4 RS1 RW Carry Flag Auxiliary Carry General Purpo	3 RS0 RW Flag se User-Defin Select bit 1	OV RW	F1	P RW
7 CY	m Status Wo 6 AC RW CY AC F0 RS ⁻	rd Register) 5 F0 RW	: DOH 4 RS1 RW Carry Flag Auxiliary Carry General Purpo Register Bank	3 RS0 RW Flag se User-Defin Select bit 1	OV RW	F1	P RW

indicate an odd/even number of '1' bits in the accumulator

EO (Extended Operation Register) : A2H

7	6	5	4		3	2	1	0
-	-	-	TRAP_E	N	-	DPSEL2	DPSEL1	DPSEL0
-	-	-	RW		-	RW	RW	RW
								Initial value : 00H
	TR	AP_EN	Select the	Instruction	n (Keep	always '0').		
			0	Select So	ftware T	RAP Instruction	on	
			1	Select MC	OVC @(I	OPTR++), A		
	DPS	SEL[2:0]	Select Ban	ked Data	Pointer	Register		
			DPSEL2	DPSEL1	SPSEL	0 Descriptio	n	
			0	0	0	DPTR0		
			0	0	1	DPTR1		
			Reserved					

9. I/O Ports

9.1 I/O Ports

The MC96F6432 has ten groups of I/O ports (P0 ~ P5). Each port can be easily configured by software as I/O pin, internal pull up and open-drain pin to meet various system configurations and design requirements. Also P0 includes function that can generate interrupt according to change of state of the pin.

9.2 Port Register

9.2.1 Data Register (Px)

Data Register is a bidirectional I/O port. If ports are configured as output ports, data can be written to the corresponding bit of the Px. If ports are configured as input ports, the data can be read from the corresponding bit of the Px.

9.2.2 Direction Register (PxIO)

Each I/O pin can be independently used as an input or an output through the PxIO register. Bits cleared in this register will make the corresponding pin of Px to input mode. Set bits of this register will make the pin to output mode. Almost bits are cleared by a system reset, but some bits are set by a system reset.

9.2.3 Pull-up Resistor Selection Register (PxPU)

The on-chip pull-up resistor can be connected to I/O ports individually with a pull-up resistor selection register (PxPU). The pull-up register selection controls the pull-up resister enable/disable of each port. When the corresponding bit is 1, the pull-up resister of the pin is enabled. When 0, the pull-up resister is disabled. All bits are cleared by a system reset.

9.2.4 Open-drain Selection Register (PxOD)

There are internally open-drain selection registers (PxOD) for P0 ~ P4 and a bit for P5. The open-drain selection register controls the open-drain enable/disable of each port. Almost ports become push-pull by a system reset, but some ports become open-drain by a system reset.

9.2.5 Debounce Enable Register (PxDB)

P0[7:2], P1[2:1], P1[7:6], P52 and P54 support debounce function. Debounce clocks of each ports are fx/1, fx/4, and fx/4096.

9.2.6 Port Function Selection Register (PxFSR)

These registers define alternative functions of ports. Please remember that these registers should be set properly for alternative port function. A reset clears the PxFSR register to '00H', which makes all pins to normal I/O ports.

9.2.7 Register Map

Table 9-1 Port Register Map

Name	Address	Dir	Default	Description
P0	80H	R/W	00H	P0 Data Register
P0IO	A1H	R/W	00H	P0 Direction Register
P0PU	ACH	R/W	00H	P0 Pull-up Resistor Selection Register
P0OD	91H	R/W	00H	P0 Open-drain Selection Register
P0DB	DEH	R/W	00H	P0 Debounce Enable Register
P0FSRH	D3H	R/W	00H	P0 Function Selection High Register
P0FSRL	D2H	R/W	00H	P0 Function Selection Low Register
P1	88H	R/W	00H	P1 Data Register
P1IO	B1H	R/W	00H	P1 Direction Register
P1PU	ADH	R/W	00H	P1 Pull-up Resistor Selection Register
P10D	92H	R/W	00H	P1 Open-drain Selection Register
P15DB	DFH	R/W	00H	P1/P5 Debounce Enable Register
P1FSRH	D5H	R/W	00H	P1 Function Selection High Register
P1FSRL	D4H	R/W	00H	P1 Function Selection Low Register
P2	90H	R/W	00H	P2 Data Register
P2IO	B9H	R/W	00H	P2 Direction Register
P2PU	AEH	R/W	00H	P2 Pull-up Resistor Selection Register
P2OD	93H	R/W	00H	P2 Open-drain Selection Register
P2FSRH	D7H	R/W	00H	P2 Function Selection High Register
P2FSRL	D6H	R/W	00H	P2 Function Selection Low Register
P3	98H	R/W	00H	P3 Data Register
P3IO	C1H	R/W	00H	P3 Direction Register
P3PU	AFH	R/W	00H	P3 Pull-up Resistor Selection Register
P3FSR	EEH	R/W	00H	P3 Function Selection Register
P4	A0H	R/W	00H	P4 Data Register
P4IO	C9H	R/W	00H	P4 Direction Register
P4PU	A3H	R/W	00H	P4 Pull-up Resistor Selection Register
P4OD	94H	R/W	00H	P4 Open-drain Selection Register
P4FSR	EFH	R/W	00H	P4 Function Selection Register
P5	B0H	R/W	00H	P5 Data Register
P5IO	D1H	R/W	00H	P5 Direction Register
P5PU	95H	R/W	00H	P5 Pull-up Resistor Selection Register
P5FSR	EFH	R/W	00H	P5 Function Selection Register

9.3 P0 Port

9.3.1 P0 Port Description

P0 is 8-bit I/O port. P0 control registers consist of P0 data register (P0), P0 direction register (P0IO), debounce enable register (P0DB), P0 pull-up resistor selection register (P0PU), and P0 open-drain selection register (P0OD). Refer to the port function selection registers for the P0 function selection.

9.3.2 Register description for P0

) (P0 Data	6	E	4	2	2	1	0
7	6	5	4	3		1	
P07	P06	P05	P04	P03	P02	P01	P00
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 0
	P0[7:0]	I/O Data				
	ection Regist						
7	6	5	4	3	2	1	0
P0710	P06IO	P0510	P041O	P03IO	P0210	P011O	P00IO
RW	RW	RW	RW	R/W	RW	RW	RW
							Initial value : 0
	POI	O[7:0]	P0 Data I/O Di	irection.			
			0 Input				
			0 Input 1 Outpu	ut			
			1 Outpu		5 function pos	sible when in	nut
			1 Outpu	ut EINTO ~ EINTS	5 function pos	sible when in	put
			1 Outpu NOTE: EC3/E	EINTO ~ EINT	5 function pos	sible when in	put
-	-	r Selection R	1 Outpu NOTE: EC3/E egister) : ACH	EINTO ~ EINT			
7	6	r Selection R 5	1 Outpu NOTE: EC3/E egister) : ACH	EINTO ~ EINTS	2	1	0
7 P07PU	6 P06PU	r Selection R 5 P05PU	1 Outpu NOTE: EC3/E egister) : ACH 4 P04PU	EINTO ~ EINTS I 3 P03PU	2 P02PU	1 P01PU	0 P00PU
7	6	r Selection R 5	1 Outpu NOTE: EC3/E egister) : ACH	EINTO ~ EINTS	2	1 P01PU RW	0 P00PU RW
7 P07PU	6 P06PU	r Selection R 5 P05PU	1 Outpu NOTE: EC3/E egister) : ACH 4 P04PU	EINTO ~ EINTS I 3 P03PU	2 P02PU	1 P01PU RW	0 P00PU
7 P07PU	6 P06PU RW	r Selection R 5 P05PU RW	1 Outpu NOTE: EC3/E egister) : ACH 4 P04PU	EINTO ~ EINTS 1 3 P03PU RW	2 P02PU RW	1 P01PU RW	0 P00PU RW
7 P07PU	6 P06PU RW	r Selection R 5 P05PU RW PU[7:0]	1 Outpu NOTE: EC3/E egister) : ACH 4 P04PU RW	EINT0 ~ EINT3 1 3 P03PU RW -up Resistor o	2 P02PU RW	1 P01PU RW	0 P00PU RW
7 P07PU	6 P06PU RW	r Selection R 5 P05PU RW PU[7:0]	1 Outpu NOTE: EC3/E egister) : ACH 4 P04PU RW Configure Pull-	EINTO ~ EINTS	2 P02PU RW	1 P01PU RW	0 P00PU RW
7 P07PU	6 P06PU RW	r Selection R 5 P05PU RW PU[7:0]	1 Outpu NOTE: EC3/E egister) : ACH 4 P04PU RW Configure Pull- 0 Disab	EINTO ~ EINTS	2 P02PU RW	1 P01PU RW	0 P00PU RW
7 P07PU RW	6 P06PU RW	r Selection R 5 P05PU RW PU[7:0]	1 Outpu NOTE: EC3/E egister) : ACH 4 P04PU RW Configure Pull- 0 Disab 1 Enabl	EINTO ~ EINTS	2 P02PU RW	1 P01PU RW	0 P00PU RW
7 P07PU RW	6 P06PU RW P0F	r Selection R 5 P05PU RW PU[7:0]	1 Outpu NOTE: EC3/E egister) : ACH 4 P04PU RW Configure Pull- 0 Disab 1 Enabl	EINTO ~ EINTS	2 P02PU RW	1 P01PU RW	0 P00PU RW
7 P07PU RW	6 P06PU RW P0F	r Selection R 5 P05PU RW PU[7:0]	1 Outpu NOTE: EC3/E egister) : ACH 4 P04PU RW Configure Pull- 0 Disab 1 Enabl	EINTO ~ EINTS	2 P02PU RW f P0 Port	1 P01PU RW	0 P00PU RWV Initial value : 0
7 P07PU RW 00D (P0 Op 7	6 P06PU RW P0F pen-drain Sele	r Selection R 5 P05PU RW PU[7:0] ection Regist	1 Outpu NOTE: EC3/E egister) : ACH 4 P04PU RW Configure Pull- 0 Disab 1 Enabl ter) : 91H 4	EINTO ~ EINTS PO3PU RW -up Resistor o le le 3	2 P02PU RW f P0 Port	1 P01PU RW	0 P00PU RWV Initial value : 0

P0OD[7:0] Configure Open-drain of P0 Port

- 0 Push-pull output
- 1 Open-drain output

7	6	5	4	3	;	2	1	0
DBCLK1	DBCLK0	P07DB	P06DE	B P05	DB	P04DB	P03DB	P02DB
RW	RW	RW	RW	R/	N	RW	RW	RW
								Initial value : 00
	DB	CLK[1:0]	Configure	Debounce	Clock o	of Port		
			DBCLK1	DBCLK0	Descrip	otion		
			0	0	fx/1			
			0	1	fx/4			
			1	0	fx/4096	6		
			1	1	Reserv	ved		
	P07	'DB	Configure	Debounce	of P07	Port		
			0	Disable				
			1	Enable				
	P06	5DB	Configure	Debounce	of P06	Port		
			0	Disable				
			1	Enable				
	P05	5DB	-	Debounce	of P05	Port		
			0	Disable				
			1	Enable				
	P04	IDB	-	Debounce	of P04	Port		
			0	Disable				
	_		1	Enable		_		
	P03	BDB	-	Debounce	of P03I	Port		
			0	Disable				
			1	Enable		D (
	P02	2DB	-	Debounce	ot P02	Port		
			0	Disable				
			1	Enable				

P0DB (P0 Debounce Enable Register) : DEH

- NOTES) 1. If the same level is not detected on enabled pin three or four times in a row at the sampling clock, the signal is eliminated as noise.
 - 2. A pulse level should be input for the duration of 3 clock or more to be actually detected as a valid edge.
 - 3. The port debounce is automatically disabled at stop mode and recovered after stop mode release.

9.4 P1 Port

9.4.1 P1 Port Description

P1 is 8-bit I/O port. P1 control registers consist of P1 data register (P1), P1 direction register (P1IO), debounce enable register (P15DB), P1 pull-up resistor selection register (P1PU), and P1 open-drain selection register (P1OD) . Refer to the port function selection registers for the P1 function selection.

9.4.2 Register description for P1

7	6	5	4	3	2	1	0
P17	P16	P15	P14	P13	P12	P11	P10
RW	RW	RW	RW	RW	RW	RW	RW
							nitial value : 00
	P1[7:0]	I/O Data				
IIO (P1 Dire	ection Registe	er) : B1H					
7	6	5	4	3	2	1	0
P1710	P1610	P1510	P14Ю	P1310	P1210	P1110	P1010
RW	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : 0
	P11	O[7:0]	P1 Data I/O Di	rection			
			0 Input				
			1 Outpu	ıt			
			NOTE: EINT when input	6/ENINT7/EIN	IT11/EINT12/S	SS2/EC1 fund	ction possibl
IPU (P1 Pul	II-up Resisto	r Selection	Register) : ADH	I			
7	6	5	4	3	2	1	0
						P11PU	
P17PU	P16PU	P15PU	P14PU	P13PU	P12PU	FIIFU	P10PU
P17PU RW	P16PU RW	P15PU RW	P14PU RW	P13PU RW	RW	RW	
						RW	P10PU RW
	RW			RW	RW	RW	P10PU RW
	RW	RW	RW	RW -up Resistor o	RW	RW	P10PU RW
	RW	RW	RW Configure Pull-	RW -up Resistor o le	RW	RW	P10PU
	RW	RW	RW Configure Pull- 0 Disab	RW -up Resistor o le	RW	RW	P10PU RW
RW	RW	RW PU[7:0]	RW Configure Pull- 0 Disab 1 Enabl	RW -up Resistor o le	RW	RW	P10PU RW

7 6 5 4 3 2 1 P17OD P160D P15OD P140D P13OD P12OD P110D RW RW RW RW RW RW RW Initial value : 08H P1OD[7:0]

Configure Open-drain of P1 Port

- 0 Push-pull output
- 1 Open-drain output

0

P100D

RW

7	6	5	4	3	2	1	0
-	-	P54DB	P52DB	P17DB	P16DB	P12DB	P11DB
_	-	RW	RW	RW	RW	RW	RW
						I	nitial value : 00
	P54	4DB	Configure Deb	ounce of P54	Port		
			0 Dis	able			
			1 Ena	able			
	P52	2DB	Configure Deb	ounce of P52	Port		
			0 Dis	able			
			1 Ena	able			
	P17	7DB	Configure Deb	ounce of P17	Port		
			0 Dis	able			
			1 Ena	able			
	P16	6DB	Configure Deb	ounce of P16	Port		
			0 Dis	able			
			1 Ena	able			
	P12	2DB	Configure Deb	ounce of P12	Port		
			0 Dis	able			
			1 Ena	able			
	P1 1	IDB	Configure Deb	ounce of P11	Port		
			0 Dis	able			
			1 Ena	able			

P15DB (P1/P5 Debounce Enable Register) : DFH

NOTES) 1. If the same level is not detected on enabled pin three or four times in a row at the sampling clock, the signal is eliminated as noise.

2. A pulse level should be input for the duration of 3 clock or more to be actually detected as a valid edge.

- 3. The port debounce is automatically disabled at stop mode and recovered after stop mode release.
- 4. Refer to the port 0 debounce enable register (P0DB) for the debounce clock of port 1 and port 5.

9.5 P2 Port

9.5.1 P2 Port Description

P2 is 8-bit I/O port. P2 control registers consist of P2 data register (P2), P2 direction register (P2IO), P2 pull-up resistor selection register (P2PU) and P2 open-drain selection register (P2OD). Refer to the port function selection registers for the P2 function selection.

9.5.2 Register description for P2

	Register) : 90						
7	6	5	4	3	2	1	0
P27	P26	P25	P24	P23	P22	P21	P20
RW	RW	RW	RW	R/W	RW	RW	RW
							Initial value : 00
	P2[7:0]	I/O Data				
2IO (P2 Dire	ection Regist	er) : B9H					
7	6	5	4	3	2	1	0
P2710	P2610	P2510	P2410	P2310	P2210	P2110	P2010
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00
	P2I	O[7:0]	P2 Data I/O Di	irection			
		0[110]					
			1 Outpu				
			NOTE: SS1 fu	nction possible	e when input		
2PU (P2 Pu	II-up Resisto	r Selection F	Register) : AEH	I			
7	6	5	4		-		
P27PU				3	2	1	0
	P26PU	P25PU	P24PU	3 P23PU	2 P22PU	1 P21PU	0 P20PU
RW	RW	P25PU RW					
RW			P24PU	P23PU	P22PU	P21PU RW	P20PU RW
RW	RW	RW	P24PU RW	P23PU RW	P22PU RW	P21PU RW	P20PU RW
RW	RW		P24PU RW Configure Pull	P23PU RW -up Resistor o	P22PU RW	P21PU RW	P20PU RW
RW	RW	RW	P24PU RW Configure Pull 0 Disab	P23PU RW -up Resistor o	P22PU RW	P21PU RW	P20PU RW
RW	RW	RW	P24PU RW Configure Pull	P23PU RW -up Resistor o	P22PU RW	P21PU RW	P20PU RW
	RW P2F	RW PU[7:0]	P24PU RW Configure Pull 0 Disab 1 Enabl	P23PU RW -up Resistor o	P22PU RW	P21PU RW	P20PU RW
20D (P2 Op	RW P2F	RW PU[7:0] ection Regis	P24PU RW Configure Pull 0 Disab 1 Enabl ter) : 93H	P23PU RW -up Resistor o ole le	P22PU RW f P2 Port	P21PU RW	P20PU RW Initial value : 00
20D (P2 Op 7	RW P2F ben-drain Selo 6	RW PU[7:0] ection Regis 5	P24PU RW Configure Pull 0 Disab 1 Enabl ter) : 93H 4	P23PU RW -up Resistor o le le	P22PU RW f P2 Port 2	P21PU RW	P20PU RW Initial value : 00
220D (P2 Op 7 P270D	RW P2F pen-drain Sele 6 P260D	RW PU[7:0] ection Regis 5 P25OD	P24PU RW Configure Pull 0 Disab 1 Enabl ter) : 93H 4 P24OD	P23PU RW -up Resistor o le le 3 P23OD	P22PU RW f P2 Port 2 P22OD	P21PU RW 1 P210D	P20PU RW Initial value : 00 0 P200D
20D (P2 Op 7	RW P2F ben-drain Selo 6	RW PU[7:0] ection Regis 5	P24PU RW Configure Pull 0 Disab 1 Enabl ter) : 93H 4	P23PU RW -up Resistor o le le	P22PU RW f P2 Port 2	P21PU RW 1 P21OD RW	P20PU RW Initial value : 00

P2OD[7:0] Configure Open-drain of P2 Port

0 Push-pull output

1 Open-drain output

9.6 P3 Port

9.6.1 P3 Port Description

P3 is 8-bit I/O port. P3 control registers consist of P3 data register (P3), P3 direction register (P3IO) and P3 pull-up resistor selection register (P3PU). Refer to the port function selection registers for the P3 function selection.

9.6.2 Register description for P3

7	6	5	4	3	2	1	0
P37	P36	P35	P34	P33	P32	P31	P30
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00
	P3[7:0]	I/O Data				
P3IO (P3 Dire	ection Regist	er) : C1H					
P3IO (P3 Dire 7	ection Regist 6	er) : C1H 5	4	3	2	1	0
-	_	-	4 P34IO	3 P3310	2 P32IO	1 P31IO	0 P30IO
7	6	5		-	_	-	-
7 P37IO	6 P36lO	5 P35IO	P34Ю	P33IO	P3210	P31IO RW	P30IO
7 P37IO	6 P36IO RW	5 P35IO	P34Ю	P33IO RW	P3210	P31IO RW	P30IO RW
7 P37IO	6 P36IO RW	5 P35IO RW	P34IO RW	P33IO RW irection	P3210	P31IO RW	P30IO RW
7 P37IO	6 P36IO RW	5 P35IO RW	P34Ю RW P3 Data I/O D	P33IO RW irection	P3210	P31IO RW	P30IO RW

7	6	5	4	3	2	1	0	
P37PU	P36PU	P35PU	P34PU	P33PU	P32PU	P31PU	P30PU	
RW								
						I	nitial value : 00	Н

P3PU[7:0]

Configure Pull-up Resistor of P3 Port

0 Disable

1 Enable

9.7 P4 Port

9.7.1 P4 Port Description

P4 is 4-bit I/O port. P4 control registers consist of P4 data register (P4), P4 direction register (P4IO), P4 pull-up resistor selection register (P4PU) and P4 open-drain selection register (P4OD). Refer to the port function selection registers for the P4 function selection.

9.7.2 Register description for P4

7	6	5	4	3	2	1	0
, 	-	5	-	3 P43	2 P42	P41	P40
_	_	_		RW	RW	RW	RW
-	-	-	_	LA MARK	LA MARK		Initial value : 0
	D4	2-01					
	P4[3:0]	I/O Data				
O (P4 Dire	ection Regist	er) : C9H					
7	6	5	4	3	2	1	0
-	-	-	-	P4310	P4210	P411O	P4010
_	_	_	_	RW	RW	RW	R/W
							Initial value : 00
	P4I	O[3:0]	P4 Data I/O Di	irection			
		• •	0 Input				
			1 Outpu	ıt			
			NOTE: SS0 fu		o whon input		
		.					
-	-		Register) : A3H		2	4	0
7 7	II-up Resistor 6	r Selection 5	Register) : A3H 4	3	2	1	0
-	-			3 P43PU	P42PU	P41PU	P40PU
-	-			3		P41PU RW	P40PU RW
-	6 	5 - -	4	3 P43PU RW	P42PU RW	P41PU RW	P40PU RW
-	6 		4 – Configure Pull	3 P43PU RW -up Resistor o	P42PU RW	P41PU RW	P40PU RW
-	6 	5 - -	4 – Configure Pull 0 Disab	3 P43PU RW -up Resistor o	P42PU RW	P41PU RW	P40PU RW
-	6 	5 - -	4 – Configure Pull	3 P43PU RW -up Resistor o	P42PU RW	P41PU RW	P40PU RW
-	6 	5 - -	4 – Configure Pull 0 Disab	3 P43PU RW -up Resistor o	P42PU RW	P41PU RW	P40PU RW
7	6 	5 – – PU[3:0]	4 – Configure Pull 0 Disab 1 Enab	3 P43PU RW -up Resistor o	P42PU RW	P41PU RW	P40PU RW
7	6 - - P4F	5 – – PU[3:0]	4 – Configure Pull 0 Disab 1 Enab	3 P43PU RW -up Resistor o	P42PU RW	P41PU RW	P40PU RW
7 OD (P4 Op	6 – P4F	5 – PU[3:0] ection Regis	4 – Configure Pull 0 Disab 1 Enab	3 P43PU RW -up Resistor o le	P42PU RW	P41PU RW	P40PU RW Initial value : 00
7 DD (P4 Op	6 – P4F	5 – PU[3:0] ection Regis	4 – Configure Pull 0 Disab 1 Enab ster) : 94H 4	3 P43PU RW -up Resistor o ole le	P42PU RW f P4 Port	P41PU RW	P40PU RW Initial value : 00
7 OD (P4 Op	6 – P4F	5 – PU[3:0] ection Regis	4 – Configure Pull 0 Disab 1 Enab ster) : 94H 4	3 P43PU RW -up Resistor o le le 3 P43OD	P42PU RW f P4 Port 2 P42OD	P41PU RW 1 P41OD RW	P40PU RW Initial value : 00 0 P400D
7 OD (P4 Op	6 – P4F en-drain Selo 6 – –	5 PU[3:0] ection Regis 5 	4 - Configure Pull 0 Disab 1 Enab ster) : 94H 4 - -	3 P43PU RW -up Resistor o ole le 3 P43OD RW	P42PU RW f P4 Port 2 P42OD RW	P41PU RW 1 P41OD RW	P40PU RW Initial value : 00 D P400D RW
7 DD (P4 Op	6 – P4F en-drain Selo 6 – –	5 – PU[3:0] ection Regis	4 - Configure Pull 0 Disab 1 Enab ster) : 94H 4 - Configure Ope	3 P43PU RW -up Resistor o le le 3 P43OD RW en-drain of P4	P42PU RW f P4 Port 2 P42OD RW	P41PU RW 1 P41OD RW	P40PU RW Initial value : 00 D P400D RW
7 OD (P4 Op	6 – P4F en-drain Selo 6 – –	5 PU[3:0] ection Regis 5 	4 - Configure Pull 0 Disab 1 Enab ster) : 94H 4 - Configure Ope 0 Push	3 P43PU RW -up Resistor o ole le 3 P43OD RW	P42PU RW f P4 Port 2 P42OD RW	P41PU RW 1 P41OD RW	P40PU RW Initial value : 00 D P400D RW

9.8 P5 Port

9.8.1 P5 Port Description

P5 is 6-bit I/O port. P5 control registers consist of P5 data register (P5), P5 direction register (P5IO) and P5 pull-up resistor selection register (P5PU). Refer to the port function selection registers for the P5 function selection.

9.8.2 Register description for P5

P5 (P5 Data F 7	6	5	4	3	2	1	0
-	-	P55	P54	P53	P52	P51	P50
_	_	RW	RW	RW	RW	RW	RW
	P5[5:0]	I/O Data			I	nitial value : 00
95IO (P5 Dire	ection Registe	er) : D1H					
7	6	5	4	3	2	1	0
-	-	P5510	P5410	P5310	P5210	P5110	P5010
_	_	RW	RW	R/W	RW	RW	RW
						I	nitial value : 00
	P510	O[5:0]	P5 Data I/O Di 0 Input 1 Outpu NOTE: EC0/E	ut	BLNK functior	n possible whe	en input
25PU (P5 Pu	II-up Resistor	Selection	Register) : 95H				

7	6	5	4	3	2	1	0
-	-	P55PU	P54PU	P53PU	P52PU	P51PU	P50PU
-	-	RW	RW	RW	RW	RW	RW
							nitial value : 00H

P5PU[5:0]

Configure Pull-up Resistor of P5 Port 0 Disable

Enable

1

9.9 Port Function

9.9.1 Port Function Description

Port function control registers consist of Port function selection register 0 ~ 5. (P0FSRH/L ~ P5FSR).

9.9.2 Register description for P0FSRH/L ~ P5FSR

7	6	5	4	3			2	1			0
-	-	P0FSRH5	P0FSRH4	POFSRI	-13	POF	FSRH2	POFSRH	11	POF	SRH0
-	-	RW	RW	RW		I	RW	RW		R	Ŵ
									Ir	nitial v	alue : (
	POF	SRH[5:4]	P07 Function	on Select							
			P0FSRH5	P0FSRH4	Des	scripti	on				
			0	0	I/OF inpu		(EINT5	function	pos	sible	when
			0	1	SEC	G22 F	unction				
			1	0	AN5	5 Fun	iction				
			1	1	PW	M4C	B Functi	on			
	POF	SRH[3:2]	P06 Function	on Select							
			P0FSRH3	P0FSRH2	Des	scripti	on				
			0	0	I/OF inpu		(EINT4	function	pos	sible	when
			0	1	SEC	G23 F	unction				
			1	0	AN4	4 Fun	oction				
			1	1	PW	M4C	A Functi	on			
	POF	SRH[1:0]	P05 Function	on Select							
			P0FSRH1	P0FSRH0	Des	scripti	on				
			0	0	I/OF inpu		(EINT3	function	pos	sible	when
			0	1	SEC	G24 F	unction				
			1	0	AN3	3 Fun	iction				
			1	1	PW	M4BI	B Functio	on			

P0FSRH (Port 0 Function Selection High Register) : D3H

7	6	5	4	3		2	1		0
-	P0FSRL6	P0FSRL5	P0FSRL4	1 POFSR	L3	P0FSRL2	POFSRL	_1	P0FSRL0
-	RW	RW	RW	RW		RW	RW		RW
								Ini	tial value : 00H
	POF	FSRL[6:5]	P04 Functi	on Select					
			P0FSRL6	P0FSRL5	Des	cription			
			0	0	I/OP inpu	ort (EINT2 t)	function	poss	ible when
			0	1	SEG	25 Functior	n		
			1	0	AN2	Function			
			1	1	PWI	/4BA Funct	ion		
	POF	FSRL[4:3]	P03 Functi	on Select					
			P0FSRL4	P0FSRL3	Des	cription			
			0	0	I/OP inpu	ort (EINT1 t)	function	poss	ible when
			0	1	SEG	26 Function	n		
			1	0	AN1	Function			
			1	1	PWI	/4AB Funct	ion		
	POF	FSRL[2:1]	P02 Functi	on Select					
			P0FSRL2	P0FSRL1	Des	cription			
			0	0	I/OP inpu	ort (EINT0 t)	function	poss	ible when
			0	1	AVR	EF Functior	า		
			1	0	AN0	Function			
			1	1	T40	/PWM4A Fu	Inction		
	POF	FSRL0	P01 Functi	on Select					
			0	I/OPort					
			1	T3O Funct	ion				

P0FSRL (Port 0 Function Selection Low Register) : D2H

7	6	5	4	3	2	1	0
P1FSRH7	P1FSRH6	P1FSRH5	P1FSRH	4 P1FSRI	-13 P1FSRH2	P1FSRH1	P1FSRH0
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 0
	P1F	-SRH[7:6]	P17 Function	on Select			
			P1FSRH7	P1FSRH6	Description		
			0	0	I/OPort (EINT6/S input)	SS2 function p	ossible when
			0	1	SEG21 Function		
			1	0	AN6 Function		
			1	1	Not used		
	P1F	SRH[5:4]	P16 Functi	on Select			
			P1FSRH5	P1FSRH4	Description		
			0	0	I/OPort (EINT7 input)	function po	ssible when
			0	1	SEG20 Function		
			1	0	AN7 Function		
			1	1	SCK2 Function		
	P1F	-SRH[3:2]	P15 Function				
				P1FSRH2	Description		
			0	0	I/OPort		
			0	1	SEG19 Function		
			1	0	AN8 Function		
			1	1	MISO2 Function		
	P1F	-SRH[1:0]	P14 Function				
			P1FSRH1	P0FSRH0	Description		
			0	0	I/OPort		
			0	1	SEG18 Function		
			1	0	AN9 Function		
			1	1	MOSI2 Function		

P1FSRH (Port 1 Function Selection High Register) : D5H

7	6	5	4	3	2	1	0
P1FSRL7	P1FSRL6	P1FSRL5	P1FSRL4	1 P1FSR	L3 P1FSRL2	P1FSRL1	P1FSRL0
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00
	P1F	-SRL[7:6]	P13 Functi	on Select			
			P1FSRL7	P1FSRL6	Description		
			0	0	I/OPort (EC1 fun	ction possible	when input)
			0	1	SEG17 Function		
			1	0	AN10 Function		
			1	1	BUZO Function		
	P1F	-SRL[5:4]	P12Function	on Select			
			P1FSRL5	P1FSRL4	Description		
			0	0	I/OPort (EINT11 input)	function poss	ible when
			0	1	SEG16 Function		
			1	0	AN11 Function		
			1	1	T10/PWM10 Fu	nction	
	P1F	SRL[3:2]	P11 Functi	on Select			
			P1FSRL3	P1FSRL2	Description		
			0	0	I/OPort (EINT12 input)	function poss	ible when
			0	1	SEG15 Function		
			1	0	AN12 Function		
			1	1	T2O/PWM2O Fu	nction	
	P1F	SRL[1:0]	P10 Functi	on Select			
			P1FSRL1	P1FSRL0	Description		
			0	0	I/OPort		
			0	1	SEG14 Function		
			1	0	AN13 Function		
			1	1	RXD1/SCL1/MIS	O1 Function	

P1FSRL (Port 1 Function Selection Low Register) : D4H

			gii itogiotoi).	em			
7	6	5	4	3	2	1	0
_	_	-	-	P2FSRH3	P2FSRH2	P2FSRH1	P2FSRH0
_	-	_	_	RW	RW	RW	RW
						I	Initial value : 00
	P21	SRH3	P27 Function	select			
			0 1/01	Port			
			1 SE0	G6 Function			
	P21	SRH2	P26 Function	Select			
			0 1/01	Port			
			1 SE0	G7 Function			
	P21	SRH1	P25 Function	select			
			0 1/01	Port			
			1 SEC	G8 Function			
	P21	SRH0	P24 Function	Select			
			0 I/O	Port			
			1 SEC	G9 Function			

P2FSRH (Port 2 Function Selection High Register) : D7H

7	6	5	4	3		2	1	0
-	-	P2FSRL5	P2FSRL4	P2FSR	L3 P2F3	SRL2	P2FSRL1	P2FSRL0
-	-	RW	RW	RW	R	W	RW	RW
								Initial value : 00
	P2F	SRL5	P23 Function	on Select				
			0	I/OPort				
			1	SEG10 Fui	nction			
	P2F	SRL4	P22Functio	n Select				
			0	I/OPort (SS	S1 function p	oossibl	e when input)	
			1	SEG11 Fui	nction			
	P26	-SRL[3:2]	P21 Function	on Select				
			P2FSRL3	P2FSRL2	Descriptio	n		
			0	0	I/OPort			
			0	1	SEG12 Fu	unction		
			1	0	AN15 Fun	ction		
			1	1	SCK1 Fur	nction		
	P26	-SRL[1:0]	P20 Function	on Select				
			P2FSRL1	P1FSRL0	Descriptio	n		
			0	0	I/OPort			
			0	1	SEG13 Fu	unction		
			1	0	AN14 Fun	ction		
			1	1	TXD1/SD/	41/MO	SI1 Function	

P2FSRL (Port 2 Function Selection Low Register) : D6H

7	6	5	4	3	2	1	0
P3FSR7	P3FSR6	P3FSR5	P3FSR4	P3FSR3	P3FSR2	P3FSR1	P3FSR0
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00
	P3F	SR7	P37 Function	select			
			0 I/O	Port			
			1 CO	M0 Function			
	P3F	SR6	P36 Function	Select			
			0 I/O	Port			
			1 CO	M1 Function			
	P3F	SR5	P35 Function				
			0 I/O				
				M2/SEG0 Fur	nction		
	P3F	SR4	P34 Function				
			0 1/0				
	Dor	-000		M3/SEG1 Fur	nction		
	P31	FSR3	P33 Function				
			0 I/O		COM0 Functio		
	D20	SR2	1 CO P32 Function			n	
	FJF	-312	0 I/O				
					COM1 Functio	n	
	P3F	SR1	P31 Function				
	1.01		0 I/O				
					COM2/SEG4 F	unction	
	P3F	SR0	P30 Function				
			0 I/O	Port			
			1 CO	M7/SEG5 or (COM3/SEG5 F	unction	

P3FSR (Port 3 Function Selection Register) : EEH

- NOTES) 1. The P30-P35 is automatically configured as common or segment signal according to the duty in the LCDCRL register when the pin is selected as the sub-function for common/segment.
 - 2. The COM0-COM3 signals can be outputted through the P33-P30 pins. Refer to the LCD drive control high register (LCDCRH).

.

7	6	5	4		3	2	1	0
_	P4FSR6	P4FSR5	P4FSF	R4 P4	FSR3	P4FSR2	P4FSR1	P4FSR0
_	RW	RW	RW		RW	RW	RW	RW
								Initial value : 00H
	P4F	SR6	P43 Fund	tion Select	t			
			0	I/OPort (S	SS0 func	tion possible	when input)	
			1	VLC0 Fu	nction			
	P4F	-SR[5:4]	P42 Fund	tion Select	t			
			P4FSR5	P4FSR4	Descri	ption		
			0	0	I/OPor	t		
			0	1	VLC1	Function		
			1	0	SCK0	Function		
			1	1	Not us	ed		
	P4F	-SR[3:2]	P41 Fund	tion Select	t			
			P4FSR3	P4FSR2	Descri	ption		
			0	0	I/OPor	t		
			0	1	VLC2	Function		
			1	0	TXD0/	SDA0/MOSI0	Function	
			1	1	Not us	ed		
	P4F	-SR6[1:0]	P40 Fund	tion Select	t			
			P4FSR1	P4FSR0		-		
			0	0	I/OPor			
			0	1		Function		
			1	0	RXD0/	SCL0/MISO0	Function	
			1	1	Not us	ed		

P4FSR (Port 4 Function Selection Register) : EFH

7	6	5	4		3	2	1	0
-	_	P5FSR5	P5FSF	R4 P5	FSR3	P5FSR2	P5FSR1	P5FSR0
-	_	RW	RW	F	RW .	RW	RW	RW
								Initial value : 00
	P5F	SR5	P54 Fund	tion Select				
			0	I/OPort (E	EINT10 f	unction possil	ole when inpu	t)
			1	SXOUT F	unction			
	P5F	SR[4:3]	P53 Fund	tion Select				
			P5FSR4	P5FSR3	Descri	otion		
			0	0	I/OPor	t		
			0	1	SXIN F	unction		
			1	0	T0O/P	WM0O Functi	on	
			1	1	Not us	ed		
	P5F	SR2	P51 Fund	tion Select				
			1	0	I/OPor	t		
			1	1	XIN Fu	Inction		
	P5F	SR[1:0]	P50 Fund	tion Select				
			P5FSR1	P5FSR0	Descri	otion		
			0	0	I/OPor	t		
			0	1	XOUT	Function		
			1	0	Not us	ed		
			1	1	Not us	ed		

P5FSR (Port 5 Function Selection Register) : FFH

NOTE) Refer to the configure option for the P55/RESETB.

10. Interrupt Controller

10.1 Overview

The MC96F6432 supports up to 23 interrupt sources. The interrupts have separate enable register bits associated with them, allowing software control. They can also have four levels of priority assigned to them. The non-maskable interrupt source is always enabled with a higher priority than any other interrupt source, and is not controllable by software. The interrupt controller has following features:

- Receive the request from 23 interrupt source
- 6 group priority
- 4 priority levels
- Multi Interrupt possibility
- If the requests of different priority levels are received simultaneously, the request of higher priority level is served first.
- Each interrupt source can be controlled by EA bit and each IEx bit
- Interrupt latency: 3~9 machine cycles in single interrupt system

The non-maskable interrupt is always enabled. The maskable interrupts are enabled through four pair of interrupt enable registers (IE, IE1, IE2, IE3). Each bit of IE, IE1, IE2, IE3 register individually enables/disables the corresponding interrupt source. Overall control is provided by bit 7 of IE (EA). When EA is set to '0', all interrupts are disabled: when EA is set to '1', interrupts are individually enabled or disabled through the other bits of the interrupt enable registers. The EA bit is always cleared to '0' jumping to an interrupt service vector and set to '1' executing the [RETI] instruction. The MC96F6432 supports a four-level priority scheme. Each maskable interrupt is individually assigned to one of four priority levels according to IP and IP1.

Default interrupt mode is level-trigger mode basically, but if needed, it is possible to change to edge-trigger mode. Table 10-1 shows the Interrupt Group Priority Level that is available for sharing interrupt priority. Priority of a group is set by two bits of interrupt priority registers (one bit from IP, another one from IP1). Interrupt service routine serves higher priority interrupt first. If two requests of different priority levels are received simultaneously, the request of higher priority level is served prior to the lower one.

Interrupt Group	Highest			Lowest	
0 (Bit0)	Interrupt 0	Interrupt 6	Interrupt 12	Interrupt 18	Highest
1 (Bit1)	Interrupt 1	Interrupt 7	Interrupt 13	Interrupt 19	
2 (Bit2)	Interrupt 2	Interrupt 8	Interrupt 14	Interrupt 20	
3 (Bit3)	Interrupt 3	Interrupt 9	Interrupt 15	Interrupt 21	
4 (Bit4)	Interrupt 4	Interrupt 10	Interrupt 16	Interrupt 22	
5 (Bit5)	Interrupt 5	Interrupt 11	Interrupt 17	Interrupt 23	Lowest

Table 10-1 Interrupt Group Priority Level

10.2 External Interrupt

The external interrupt on INT0, INT1, INT5, INT6 and INT11 pins receive various interrupt request depending on the external interrupt polarity 0 high/low register (EIPOL0H/L) and external interrupt polarity 1 register (EIPOL1) as shown in Figure 10.1. Also each external interrupt source has enable/disable bits. The External interrupt flag 0 register (EIFLAG0) and external interrupt flag 1 register 1 (EIFLAG1) provides the status of external interrupts.

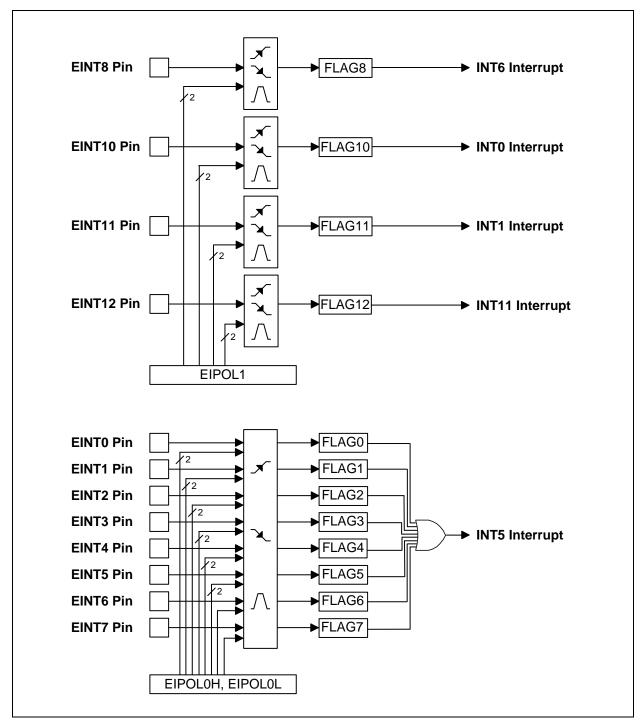


Figure 10.1 External Interrupt Description

10.3 Block Diagram

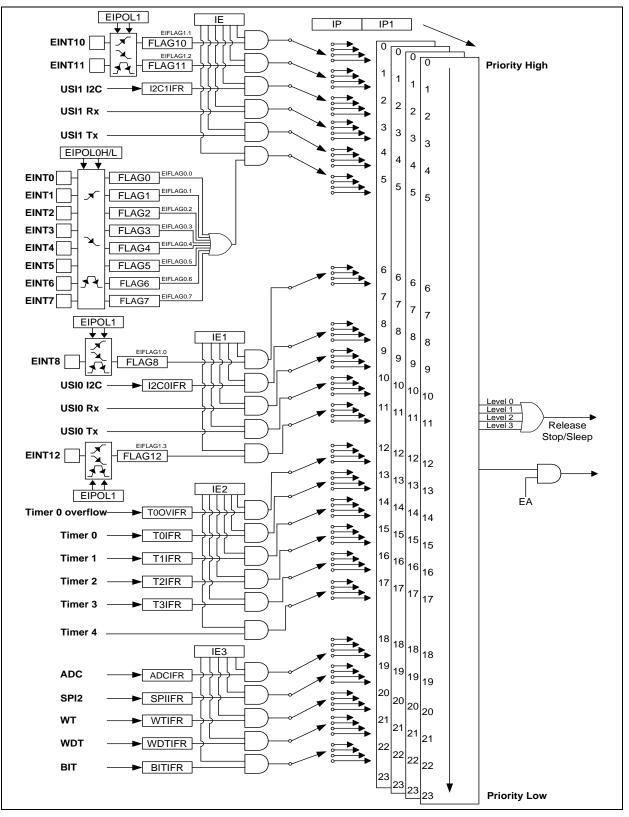


Figure 10.2 Block Diagram of Interrupt

- NOTES) 1. The release signal for stop/idle mode may be generated by all interrupt sources which are enabled without reference to the priority level.
 - 2. An interrupt request is delayed while data are written to IE, IE1, IE2, IE3, IP, IP1, and PCON register.

10.4 Interrupt Vector Table

The interrupt controller supports 24 interrupt sources as shown in the Table 10-2. When interrupt is served, long call instruction (LCALL) is executed and program counter jumps to the vector address. All interrupt requests have their own priority order.

Interrupt Source	Symbol	Interrupt Enable Bit	Polarity	Mask	Vector Address
Hardware Reset	RESETB	0 0	0	Non-Maskable	0000H
External Interrupt 10	INT0	IE.0	1	Maskable	0003H
External Interrupt 11	INT1	IE.1	2	Maskable	000BH
USI1 I2C Interrupt	INT2	IE.2	3	Maskable	0013H
USI1 Rx Interrupt	INT3	IE.3	4	Maskable	001BH
USI1 Tx Interrupt	INT4	IE.4	5	Maskable	0023H
External Interrupt 0 - 7	INT5	IE.5	6	Maskable	002BH
External Interrupt 8	INT6	IE1.0	7	Maskable	0033H
-	INT7	IE1.1	8	Maskable	003BH
USI0 I2C Interrupt	INT8	IE1.2	9	Maskable	0043H
USI0 Rx Interrupt	INT9	IE1.3	10	Maskable	004BH
USI0 Tx Interrupt	INT10	IE1.4	11	Maskable	0053H
External Interrupt 12	INT11	IE1.5	12	Maskable	005BH
T0 Overflow Interrupt	INT12	IE2.0	13	Maskable	0063H
T0 Match Interrupt	INT13	IE2.1	14	Maskable	006BH
T1 Match Interrupt	INT14	IE2.2	15	Maskable	0073H
T2 Match Interrupt	INT15	IE2.3	16	Maskable	007BH
T3 Match Interrupt	INT16	IE2.4	17	Maskable	0083H
T4 Interrupt	INT17	IE2.5	18	Maskable	008BH
ADC Interrupt	INT18	IE3.0	19	Maskable	0093H
SPI 2 Interrupt	INT19	IE3.1	20	Maskable	009BH
WT Interrupt	INT20	IE3.2	21	Maskable	00A3H
WDT Interrupt	INT21	IE3.3	22	Maskable	00ABH
BIT Interrupt	INT22	IE3.4	23	Maskable	00B3H
-	INT23	IE3.5	24	Maskable	00BBH

Table 10-2 Interrupt Vector Address Table

For maskable interrupt execution, EA bit must set '1' and specific interrupt must be enabled by writing '1' to associated bit in the IEx. If an interrupt request is received, the specific interrupt request flag is set to '1'. And it remains '1' until CPU accepts interrupt. If the interrupt is served, the interrupt request flag will be cleared automatically.

10.5 Interrupt Sequence

An interrupt request is held until the interrupt is accepted or the interrupt latch is cleared to '0' by a reset or an instruction. Interrupt acceptance always generates at last cycle of the instruction. So instead of fetching the current instruction, CPU executes internally LCALL instruction and saves the PC at stack. For the interrupt service routine, the interrupt controller gives the address of LJMP instruction to CPU. Since the end of the execution of current instruction, it needs 3~9 machine cycles to go to the interrupt service routine. The interrupt service task is terminated by the interrupt return instruction [RETI]. Once an interrupt request is generated, the following process is performed.

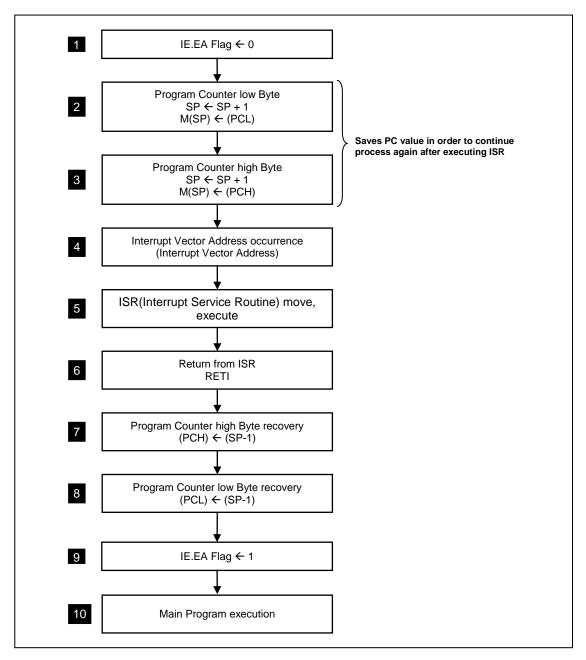


Figure 10.3 Interrupt Vector Address Table

10.6 Effective Timing after Controlling Interrupt Bit

Case a) Control Interrupt Enable Register (IE, IE1, IE2, IE3)

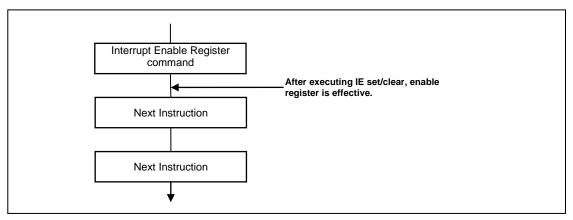


Figure 10.4 Effective Timing of Interrupt Enable Register

Case b) Interrupt flag Register

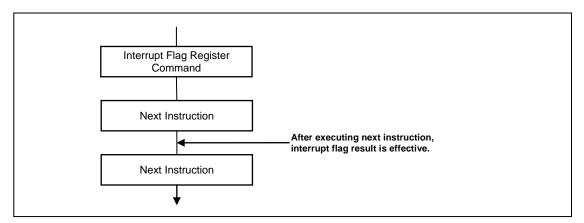


Figure 10.5 Effective Timing of Interrupt Flag Register

10.7 Multi Interrupt

If two requests of different priority levels are received simultaneously, the request of higher priority level is served first. If more than one interrupt request are received, the interrupt polling sequence determines which request is served first by hardware. However, for special features, multi-interrupt processing can be executed by software.

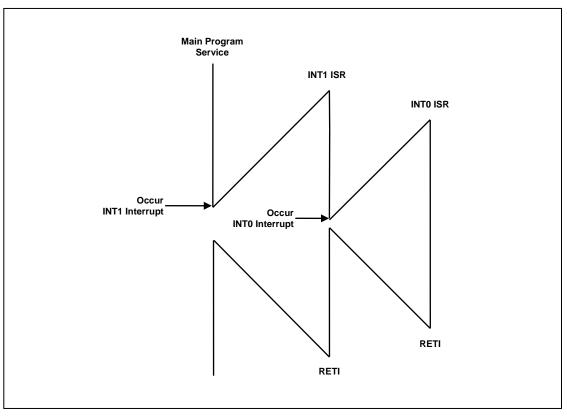


Figure 10.6 Effective Timing of Interrupt

Figure 10.6 shows an example of multi-interrupt processing. While INT1 is served, INT0 which has higher priority than INT1 is occurred. Then INT0 is served immediately and then the remain part of INT1 service routine is executed. If the priority level of INT0 is same or lower than INT1, INT0 will be served after the INT1 service has completed.

An interrupt service routine may be only interrupted by an interrupt of higher priority and, if two interrupts of different priority occur at the same time, the higher level interrupt will be served first. An interrupt cannot be interrupted by another interrupt of the same or a lower priority level. If two interrupts of the same priority level occur simultaneously, the service order for those interrupts is determined by the scan order.

10.8 Interrupt Enable Accept Timing

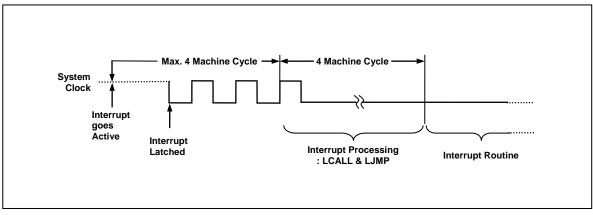


Figure 10.7 Interrupt Response Timing Diagram

10.9 Interrupt Service Routine Address

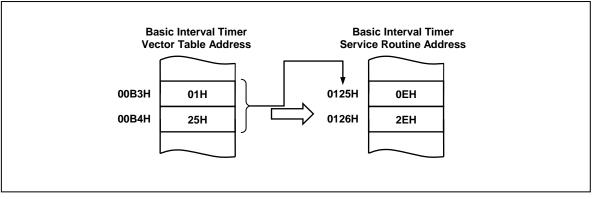
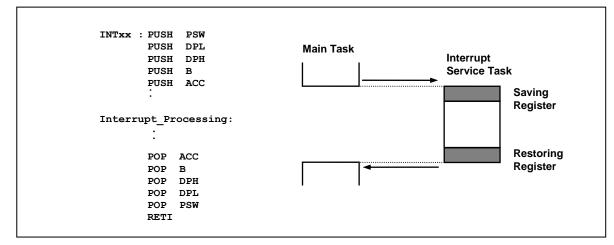



Figure 10.8 Correspondence between Vector Table Address and the Entry Address of ISP

10.10 Saving/Restore General-Purpose Registers

10.11 Interrupt Timing

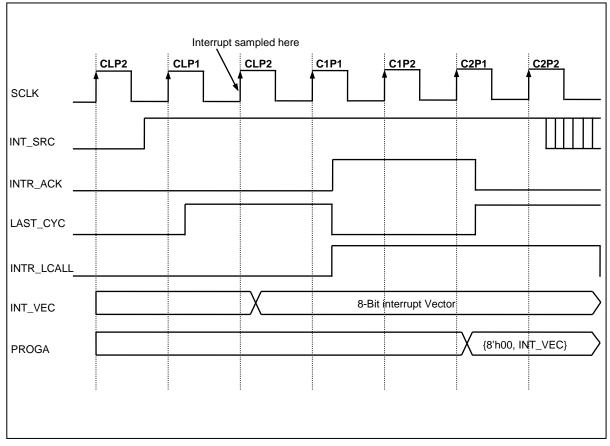


Figure 10.10 Timing Chart of Interrupt Acceptance and Interrupt Return Instruction

Interrupt sources are sampled at the last cycle of a command. If an interrupt source is detected the lower 8-bit of interrupt vector (INT_VEC) is decided. M8051W core makes interrupt acknowledge at the first cycle of a command, and executes long call to jump to interrupt service routine.

NOTE) command cycle CLPx: L=Last cycle, 1=1st cycle or 1st phase, 2=2nd cycle or 2nd phase

10.12 Interrupt Register Overview

10.12.1 Interrupt Enable Register (IE, IE1, IE2, IE3)

Interrupt enable register consists of global interrupt control bit (EA) and peripheral interrupt control bits. Total 24 peripherals are able to control interrupt.

10.12.2 Interrupt Priority Register (IP, IP1)

The 24 interrupts are divided into 6 groups which have each 4 interrupt sources. A group can be assigned 4 levels interrupt priority using interrupt priority register. Level 3 is the highest priority, while level 0 is the lowest priority. After a reset IP and IP1 are cleared to '00H'. If interrupts have the same priority level, lower number interrupt is served first.

10.12.3 External Interrupt Flag Register (EIFLAG0, EIFLAG1)

The external interrupt flag 0 register (EIFLAG0) and external interrupt flag 1 register (EIFLAG1) are set to '1' when the external interrupt generating condition is satisfied. The flag is cleared when the interrupt service routine is executed. Alternatively, the flag can be cleared by writing '0' to it.

10.12.4 External Interrupt Polarity Register (EIPOL0L, EIPOL0H, EIPOL1)

The external interrupt polarity 0 high/low register (EIPOL0H/L) and external interrupt polarity 1 register (EIPOL1) determines which type of rising/falling/both edge interrupt. Initially, default value is no interrupt at any edge.

10.12.5 Register Map

Name	Address	Dir	Default	Description
IE	A8H	R/W	00H	Interrupt Enable Register
IE1	А9Н	R/W	00H	Interrupt Enable Register 1
IE2	ААН	R/W	00H	Interrupt Enable Register 2
IE3	АВН	R/W	00H	Interrupt Enable Register 3
IP	B8H	R/W	00H	Interrupt Polarity Register
IP1	F8H	R/W	00H	Interrupt Polarity Register 1
EIFLAG0	СОН	R/W	00H	External Interrupt Flag 0 Register
EIPOL0L	A4H	R/W	00H	External Interrupt Polarity 0 Low Register
EIPOL0H	A5H	R/W	00H	External Interrupt Polarity 0 High Register
EIFLAG1	A6H	R/W	00H	External Interrupt Flag 1 Register
EIPOL1	A7H	R/W	00H	External Interrupt Polarity 1 Register

Table 10-3 Interrupt Register Map

10.13 Interrupt Register Description

The interrupt register is used for controlling interrupt functions. Also it has external interrupt control registers. The interrupt register consists of interrupt enable register (IE), interrupt enable register 1 (IE1), interrupt enable register 2 (IE2) and interrupt enable register 3 (IE3). For external interrupt, it consists of external interrupt flag 0 register (EIFLAG0), external interrupt polarity 0 high/low register (EIPOL0H/L), external interrupt flag 1 register (EIFLAG1) and external interrupt polarity 1 register (EIPOL1).

10.13.1 Register Description for Interrupt

7	6	5	4	3	2	1	0
EA	-	INT5E	INT4E	INT3E	INT2E	INT1E	INTOE
RW	_	RW	RW	RW	RW	RW	RW
							nitial value : 00H
	EA		Enable or D	sable All Interru	ipt bits		
			0 All	nterrupt disable)		
			1 All	nterrupt enable			
	INT	5E	Enable or D	sable External I	nterrupt 0 ~ 7	(EINT0 ~ EIN	IT7)
			0 Dis	able			
			1 Ena	ble			
	INT	4E	Enable or D	sable USI1 Tx I	nterrupt		
			0 Dis	able			
			1 Ena	ble			
	INT	3E	Enable or D	sable USI1 Rx I	nterrupt		
			0 Dis	able			
			1 Ena	ble			
	INT	2E	Enable or D	sable USI1 I2C	Interrupt		
			0 Dis	able			
			1 Ena	ble			
	INT	1E	Enable or D	sable External I	nterrupt 11(El	NT11)	
			0 Dis	able			
			1 Ena	ble			
	INT	0E	Enable or D	sable External I	nterrupt 10 (E	INT10)	
			0 Dis	able			
			1 Ena	ble			

IE (Interrupt Enable Register) : A8H

IE1 (Interrupt Enable Register 1): A9H

7	6	5	4	3	2	1	0		
_	_	INT11E	INT10E	INT9E	INT8E	_	INT6E		
_	-	RW	RW	RW	RW	_	RW		
							Initial value: 00H		
	INT	11E	Enable or Disable External Interrupt 12 (EINT12)						
			0 Disab	le					
			1 Enab	le					
	INT	10E	Enable or Disa	able USI0 Tx I	nterrupt				
			0 Disab	le					
			1 Enab	le					
	INT	9E	Enable or Disable USI0 Rx Interrupt						
			0 Disab	le					
			1 Enab	le					
	INT	8E	Enable or Disa	able USI0 I2C	Interrupt				
			0 Disab	le					
			1 Enab	le					
	INT	6E	Enable or Disa	able External I	nterrupt 8 (EII	NT8)			
			0 Disab	le					
			1 Enab	le					

7	6	5	4	3	2	1	0		
	_	INT17E	INT16E	INT15E	INT14E	INT13E	INT12E		
_	_	RW	RW	RW	RW	RW	RW		
							Initial value : 0		
	IN	Г17E	Enable or Dis	sable Timer 4 In	nterrupt				
			0 Disa	ble					
			1 Ena	ble					
	INT	Г16Е	Enable or Dis	able Timer 3 N	Aatch Interrupt				
			0 Disa	ble					
			1 Ena	ble					
	INT	Г15E	Enable or Disable Timer 2 Match Interrupt						
			0 Disa	ble					
			1 Ena	ble					
	IN	Г14E	Enable or Dis	sable Timer 1 N	latch Interrupt				
			0 Disa	ble					
			1 Ena	ble					
	INT	Г13E	Enable or Dis	able Timer 0 I	Match nterrup	t			
			0 Disa	ble					
			1 Ena						
	INT	Г12E		sable Timer 0 C	Overflow Interro	upt			
			0 Disa	ble					

1 Enable

IE3 (Interrupt Enable Register 3) : ABH

7	6	5	4	3	2	1	0		
-	-	-	INT22E	INT21E	INT20E	INT19E	INT18E		
-	-	-	RW	R/W	RW	RW	RW		
						ļ	nitial value : 00H		
	INT22E		Enable or Disable BIT Interrupt						
			0 Disab	le					
			1 Enabl	е					
	INT	21E	Enable or Disa	ble WDT Inte	rrupt				
			0 Disab	le					
			1 Enabl	е					
	INT	20E	Enable or Disable WT Interrupt						
			0 Disab	le					
			1 Enabl	е					
	INT	19E	Enable or Disa	ble SPI 2 Inte	errupt				
			0 Disab	le					
			1 Enabl	е					
	INT	18E	Enable or Disa	ble ADC Inter	rrupt				
			0 Disab	le					
			1 Enabl	е					

July 20, 2011 Ver. 1.2

96

IP (Interrupt	Priority Regis	ster) : B8H						
7	6	5	4	Ļ	3	2	1	0
-	-	IP5	IF	4	IP3	IP2	IP1	IP0
-	-	RW	R/	W	RW	RW	RW	R/W
							I	nitial value : 00H
IP1 (Interrupt	t Priority Reg	ister 1) : F8H						
7	6	5	4	L I	3	2	1	0
-	-	IP15	IP	14	IP13	IP12	IP11	IP10
-	-	RW	R/	W	R/W	RW	RW	RW
							I	nitial value : 00H
			Select I	nterrup	t Group Priori	ty		
	IP1	[5:0]	IP1x	IPx	Description	n		
			0	0	level 0 (lov	west)		
			0	1	level 1			
			1	0	level 2			
			1	1	level 3 (hig	ghest)		

EIFLAG0 (Ex	ternal Interru	pt Flag 0 Reg	gister) : C0H					
7	6	5	4	3	2	1	0	
FLAG7	FLAG6	FLAG5	FLAG4	FLAG3	FLAG2	FLAG1	FLAG0	
RW	RW	RW	RW	RW	RW	RW	RW	
						I	nitial value : 00	ЭH

EIFLAG0[7:0] When an External Interrupt 0-7 is occurred, the flag becomes '1'. The flag is cleared only by writing '0' to the bit. So, the flag should be cleared by software.

External Interrupt 0 ~ 7 not occurred

External Interrupt 0 ~ 7 occurred

EIPOL0H (External Interrupt Polarity 0 High Register): A5H

0

1

7	6	5	4	3	2	1	0
PC	POL7 POL6		DL6	PC	DL5	POL4	
RW	RW	RW	RW	RW	RW	RW	RW

Initial value: 00H

EIPOL0H[7:0] External interrupt (EINT7, EINT6, EINT5, EINT4) polarity selection

POLr	n[1:0]	Description
0	0	No interrupt at any edge
0	1	Interrupt on rising edge
1	0	Interrupt on falling edge
1	1	Interrupt on both of rising and falling edge
Whe	re n =4, 5	, 6 and 7

EIPOL0L (External Interrupt Polarity 0 Low Register): A4H

7	6	5	4	3	2	1	0	
PC	POL3		OL2	POL1		POL0		
RW	RW	RW	RW	RW	RW	RW		
	EIP	OL0L[7:0]	External interr	upt (EINT0, E	INT1, EINT2,	EINT3) polarit	ty selection	
			POLn[1:0]	Descriptio	n			
			0 0	No interru	pt at any edge)		
			0 1	1 Interrupt on rising edge				
			1 0	Interrupt o	n falling edge			

1 1 Interrupt on both of rising and falling edge

Where n =0, 1, 2 and 3

7	6	5	4	3	2	1	0		
-	-	-		-	_		-		
TOOVIFR	TOIFR	T3IFR	-	FLAG12	FLAG11	FLAG10	FLAG8		
RW	RW	RW	-	RW	RW	RW	RW		
						I	nitial value : 0		
	тос	OVIFR	When T0 over bit, write '0' to		,		0		
			0 T0 ov	erflow Interru	pt no generatio	on			
			1 T0 ov	erflow Interru	pt generation				
	TOI	FR	When T0 interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit or automatically clear by INT_ACK signal.						
			0 T0 Interrupt no generation						
			1 T0 Interrupt generation						
	T3I	FR	When T3 interrupt occurs, this bit becomes '1'. For clearing bit, write '0' to this bit or automatically clear by INT_ACK signal.						
			0 T3 In	terrupt no gen	eration				
			1 T3 In	terrupt genera	ation				
	EIF	LAG1[3:0]	When an External Interrupt (EINT8, EINT10-EINT12) is occurred, the flag becomes '1'. The flag is cleared by writing '0' to the bit or automatically cleared by INT_ACK signal.						
			0 Exter	nal Interrupt n	ot occurred				

EIFLAG1 (External Interrupt Flag 1 Register) : A6H

1 External Interrupt occurred

EIPOL1 (External Interrupt Polarity 1 Register): A7H

7	6	5	4	3	2	1	0	
PO	L12	P	OL11	PC	POL10		OL8	
RW	RW	RW	RW	RW RW		RW	RW	
							Initial value: 00H	
	EIP	OL1[7:0]	External interr	upt (EINT8,EINT10,EINT11,EINT12) polarity selection				
			POLn[1:0]	Description				
			0 0	No interrupt at any edge				
			0 1	Interrupt on rising edge				
			1 0	Interrupt on falling edge				
			1 1	Interrupt on both of rising and falling edge			edge	
			Where n =8, 1	0, 11 and 12				

11. Peripheral Hardware

11.1 Clock Generator

11.1.1 Overview

As shown in Figure 11.1, the clock generator produces the basic clock pulses which provide the system clock to be supplied to the CPU and the peripheral hardware. It contains main/sub-frequency clock oscillator. The main/sub clock operation can be easily obtained by attaching a crystal between the XIN/SXIN and XOUT/SXOUT pin, respectively. The main/sub clock can be also obtained from the external oscillator. In this case, it is necessary to put the external clock signal into the XIN/SXIN pin and open the XOUT/SXOUT pin. The default system clock is 1MHz INT-RC Oscillator and the default division rate is eight. In order to stabilize system internally, it is used 1MHz INT-RC oscillator on POR.

- Calibrated Internal RC Oscillator (16 MHz)
 - . INT-RC OSC/1 (16 MHz)
 - . INT-RC OSC/2 (8 MHz)
 - . INT-RC OSC/4 (4 MHz)
 - . INT-RC OSC/8 (2 MHz)
 - . INT-RC OSC/16 (1 MHz, Default system clock)
 - . INT-RC OSC/32 (0.5 MHz)
- Main Crystal Oscillator (0.4~12 MHz)
- Sub Crystal Oscillator (32.768 kHz)
- Internal WDTRC Oscillator (5 kHz)

11.1.2 Block Diagram

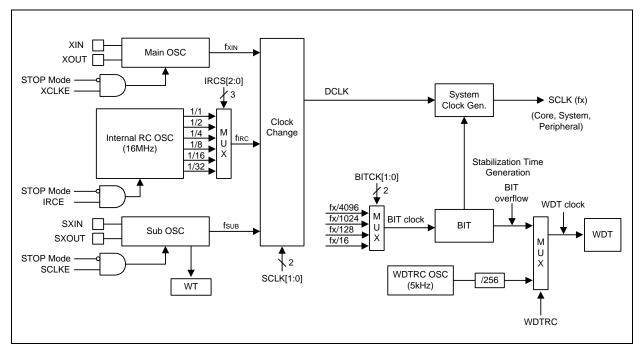


Figure 11.1 Clock Generator Block Diagram

11.1.3 Register Map

Table 11-1 Clock Generator Register Map

Name	Address	Dir	Default	Description
SCCR	8AH	R/W	00H	System and Clock Control Register
OSCCR	C8H	R/W	20H	Oscillator Control Register

11.1.4 Clock Generator Register Description

The clock generator register uses clock control for system operation. The clock generation consists of System and clock control register and oscillator control register.

11.1.5 Register Description for Clock Generator

SCCR (Syste	m and Clock	Control Regi	ister):8	BAH				
7	6	5	4		3	2	1	0
-	-	-	-		-	-	SCLK1	SCLK0
-	_	-	_		-	-	RW	RW
							I	nitial value : 00H
	SCI	LK [1:0]	System	Clock S	election Bit			
			SCLK1	SCLK0	Descriptio	n		
			0	0	INT RC O	SC (f _{IRC}) for sy	stem clock	
			0	1	External N	lain OSC (f _{XIN}) for system c	lock
			1	0	External S	ub OSC (f _{SUB})	for system cl	ock
			1	1	Not used			

7	6	5	4	1	3	2	1	0
_	-	IRCS2	IRC	CS1	IRCS0	IRCE	XCLKE	SCLKE
_	_	RW	R	W	RW	RW	RW	RW
								Initial value : (
	IRC	S[2:0]	Internal	on				
			IRCS2	IRCS	1 IRCS0	Description		
			0	0	0	INT-RC/32 (0.5	iMHz)	
			0	0	1	INT-RC/16 (1M	lHz)	
			0	1	0	INT-RC/8 (2MF	łz)	
			0	1	1	INT-RC/4 (4MH	łz)	
			1	0	0	INT-RC/2 (8MH	łz)	
			1	0	1	INT-RC/1 (16M	lHz)	
			Other values Not used					
	IRC	E	Control	the Op	eration of th	ne Internal RC C	Oscillator	
			0	Enabl	e operation	of INT-RC OSC	;	
			1	Disab	le operatior	of INT-RC OS	2	
	XCI	LKE	Control	Control the Operation of the External Main Oscillator				
			0	Disable operation of X-TAL				
			1	Enabl	e operation	of X-TAL		
	SCI	LKE	Control	the Op	eration of th	ne External Sub	Oscillator	
			0	Disab	le operatior	of SX-TAL		
			1	Enabl	e operation	of SX-TAL		

OSCCR (Oscillator Control Register) : C8H

11.2 Basic Interval Timer

11.2.1 Overview

The MC96F6432 has one 8-bit basic interval timer that is free-run and can't stop. Block diagram is shown in Figure 11.2. In addition, the basic interval timer generates the time base for watchdog timer counting. It also provides a basic interval timer interrupt (BITIFR).

The MC96F6432 has these basic interval timer (BIT) features:

- During Power On, BIT gives a stable clock generation time
- On exiting Stop mode, BIT gives a stable clock generation time
- As timer function, timer interrupt occurrence

11.2.2 Block Diagram

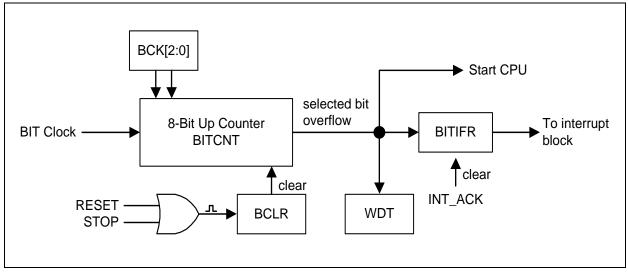


Figure 11.2 Basic Interval Timer Block Diagram

0

BITCNTO

R Initial value : 00H

11.2.3 Register Map

Table 11-2 Basic Interval Timer Register Map

Name	Address	Dir	Default Description	
BITCNT	8CH	R	00H	Basic Interval Timer Counter Register
BITCR	8BH	R/W	01H	Basic Interval Timer Control Register

11.2.4 Basic Interval Timer Register Description

The basic interval timer register consists of basic interval timer counter register (BITCNT) and basic interval timer control register (BITCR). If BCLR bit is set to '1', BITCNT becomes '0' and then counts up. After 1 machine cycle, BCLR bit is cleared to '0' automatically.

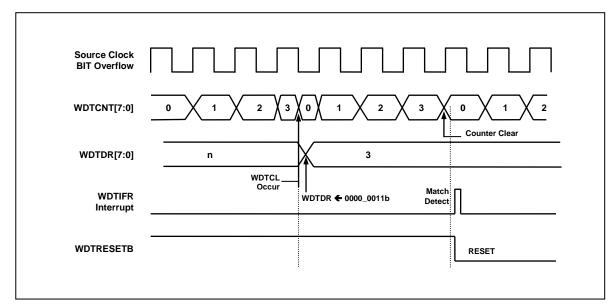
11.2.5 Register Description for Basic Interval Timer

BITCNT (Basic Interval Timer Counter Register) : 8CH 7 6 5 4 3 2 1 BITCNT7 BITCNT6 BITCNT5 BITCNT4 BITCNT3 BITCNT2 BITCNT1 R R R R R R R

BITCNT[7:0] BIT Counter

7	6	5	4	Ļ	3	2	1	0
BITIFR	BITCK1	BITCK0	-	-	BCLR	BCK2	BCK1	BCK0
RW	RW	RW	-	-	RW	RW	RW	RW
							I	nitial value : 0
	BIT	IFR				his bit become T_ACK signal.		ring bit, write
			0 BIT interrupt no generation					
			1	BIT inter	rupt genei	ration		
	BIT	BITCK[1:0]		IT clock s	ource			
			BITCK1	BITCK0	Descrip	tion		
			0	0	fx/4096			
			0	1	fx/1024			
			1	0	fx/128			
			1	1	fx/16			
	BC	LR	If this bit is written to '1', BIT Counter is cleared to '0'					
			0	Free Ru	nning			
			1	Clear Co	ounter			
	BC	K[2:0]	Select B	IT overflo	w period			
			BCK2	BCK1	BCK0	Description		
			0	0	0	Bit 0 overflow	/ (BIT Clock *	2)
			0	0	1	Bit 1 overflow	(BIT Clock *	4) (default)
			0	1	0	Bit 2 overflow	/ (BIT Clock *	8)
			0	1	1	Bit 3 overflow	/ (BIT Clock *	16)
			1	0	0	Bit 4 overflow	/ (BIT Clock *	32)
			1	0	1	Bit 5 overflow	/ (BIT Clock *	64)
			1	1	0	Bit 6 overflow	/ (BIT Clock *	128)
			1	1	1	Bit 7 overflow	/ (BIT Clock *	256)

BITCR (Basic Interval Timer Control Register) : 8BH


11.3 Watch Dog Timer

11.3.1 Overview

The watchdog timer rapidly detects the CPU malfunction such as endless looping caused by noise or something like that, and resumes the CPU to the normal state. The watchdog timer signal for malfunction detection can be used as either a CPU reset or an interrupt request. When the watchdog timer is not being used for malfunction detection, it can be used as a timer to generate an interrupt at fixed intervals. It is possible to use free running 8-bit timer mode (WDTRSON='0') or watch dog timer mode (WDTRSON='1') as setting WDTCR[6] bit. If WDTCR[5] is written to '1', WDT counter value is cleared and counts up. After 1 machine cycle, this bit is cleared to '0' automatically. The watchdog timer consists of 8-bit binary counter and the watchdog timer data register. When the value of 8-bit binary counter is equal to the 8 bits of WDTCNT, the interrupt request flag is generated. This can be used as Watchdog timer interrupt or reset of CPU in accordance with the bit WDTRSON.

The input clock source of watch dog timer is the BIT overflow. The interval of watchdog timer interrupt is decided by BIT overflow period and WDTDR set value. The equation can be described as

WDT Interrupt Interval = (BIT Interrupt Interval) X (WDTDR Value+1)

11.3.2 WDT Interrupt Timing Waveform

Figure 11.3 Watch Dog Timer Interrupt Timing Waveform

11.3.3 Block Diagram

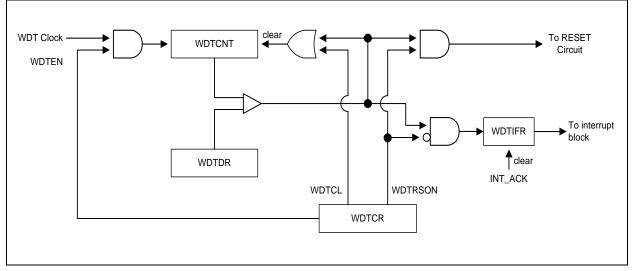


Figure 11.4 Watch Dog Timer Block Diagram

11.3.4 Register Map

Table 11-3 Watch D	og Timer Register Map
--------------------	-----------------------

Name	Address	Dir	Default Description	
WDTCNT	8EH	R	00H	Watch Dog Timer Counter Register
WDTDR	8EH	W	FFH	Watch Dog Timer Data Register
WDTCR	8DH	R/W	00H	Watch Dog Timer Control Register

11.3.5 Watch Dog Timer Register Description

The watch dog timer register consists of watch dog timer counter register (WDTCNT), watch dog timer data register (WDTDR) and watch dog timer control register (WDTCR).

11.3.6 Register Description for Watch Dog Timer

WDTCNT (Watch Dog Timer Counter Register: Read Case) : 8EH

7	6	5	4	3	2	1	0	
WDTCNT7	WDTCNT6	WDTCNT5	WDTCNT4	WDTCNT3	WDTCNT2	WDTCNT1	WDTCNT 0	1
R	R	R	R	R	R	R	R	
						I	nitial value : 00	ЭН

WDTCNT[7:0] WDT Counter

WDTDR (Watch Dog Timer Data Register: Write Case) : 8EH

7	6	5	4	3	2	1	0
WDTDR7	WDTDR6	WDTDR5	WDTDR4	WDTDR3	WDTDR2	WDTDR1	WDTDR0
W	W	W	W	W	W	W	W
							nitial value : FFI

WDTDR[7:0]

Set a period WDT Interrupt Interval=(BIT Interrupt Interval) x(WDTDR Value+1) NOTE) Do not write "0" in the WDTDR register.

WDTCR (Watch Dog Timer Control Register) : 8DH

WDTRC

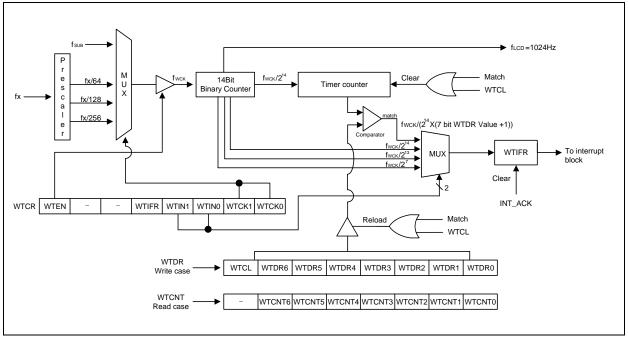
7	6	5	4	3	2	1	0	
WDTEN	WDTRSON	WDTCL	-	-	-	WDTRC	WDTIFR	
RW	RW	RW	-	-	-	RW	RW	
WDTEN			Control WDT O	-		I	nitial value : 0	0H
	WD	0 1 TRSON C	Enable Control WDT R	•	ion			

0	Free Running 8-bit timer

1	Watch Dog Timer RESET ON
1	Watch Dog Timer RESET ON

0 Free Run

1 Clear WDT Counter (auto clear after 1 Cycle)


- Control WDT Clock Selection Bit
 - 0 BIT overflow for WDT clock (WDTRC disable)
 - 1 WDTRC for WDT xlock (WDTRC enable)
- When WDT Interrupt occurs, this bit becomes '1'. For clearing bit, write WDTIFR '0' to this bit or auto clear by INT_ACK signal. 0
 - WDT Interrupt no generation 1
 - WDT Interrupt generation

11.4 Watch Timer

11.4.1 Overview

The watch timer has the function for RTC (Real Time Clock) operation. It is generally used for RTC design. The internal structure of the watch timer consists of the clock source select circuit, timer counter circuit, output select circuit, and watch timer control register. To operate the watch timer, determine the input clock source, output interval, and set WTEN to '1' in watch timer control register (WTCR). It is able to execute simultaneously or individually. To stop or reset WT, clear the WTEN bit in WTCR register. Even if CPU is STOP mode, sub clock is able to be so alive that WT can continue the operation. The watch timer counter circuits may be composed of 21-bit counter which contains low 14-bit with binary counter and high 7-bit counter in order to raise resolution. In WTDR, it can control WT clear and set interval value at write time, and it can read 7-bit WT counter value at read time.

The watch timer supplies the clock frequency for the LCD driver (f_{LCD}). Therefore, if the watch timer is disabled, the LCD driver controller does not operate.

11.4.2 Block Diagram

Figure 11.5 Watch Timer Block Diagram

11.4.3 Register Map

Name	Address	Dir	Default	Description
WTCNT	89H	R	00H	Watch Timer Counter Register
WTDR	89H	W	7FH	Watch Timer Data Register
WTCR	96H	R/W	00H	Watch Timer Control Register

11.4.4 Watch Timer Register Description

The watch timer register consists of watch timer counter register (WTCNT), watch timer data register (WTDR), and watch timer control register (WTCR). As WTCR is 6-bit writable/ readable register, WTCR can control the clock source (WTCK[1:0]), interrupt interval (WTIN[1:0]), and function enable/disable (WTEN). Also there is WT interrupt flag bit (WTIFR).

11.4.5 Register Description for Watch Timer

WTCNT (Watch Timer Counter Register: Read Case) : 89H

7	6	5	4	3	2	1	0
_	WTCNT6	WTCNT5	WTCNT4	WTCNT3	WTCNT2	WTCNT 1	WTCNT0
-	R	R	R	R	R	R	R
							nitial value : 00

WTCNT[6:0] WT Counter

WTDR (Watch Timer Data Register: Write Case) : 89H

7	6	5	4	3	2	1	0
WTCL	WTDR6	WTDR5	WTDR4	WTDR3	WTDR2	WTDR1	WTDR0
W	W	W	W	W	W	W	W
						I	nitial value : 7
	WTCL		Clear WT Counter				

0 Free Run

1 Clear WT Counter (auto clear after 1 Cycle)

WTDR[6:0] Set WT period

WT Interrupt Interval=fwck/(2^14 x(7bit WTDR Value+1))

NOTE) Do not write "0" in the WTDR register.

7	6	5	4		3	2	1	0
WTEN	_	_	WTIF	R V	VTIN1	WTIN0	WTCK1	WTCK0
RW	_	_	RM	/	RW	RW	RW	RW
								Initial value : 00
	WT	EN		atch Time	-			
			0	Disable				
			1	Enable				
	WT	IFR				this bit beco ically clear by		
			0	WT Inter	rupt no g	eneration		
			1	WT Inter	rupt gen	eration		
	WT	IN[1:0]	Determine interrupt interval					
			WTIN1	WTIN0	Descri	ption		
			0	0	f _{wcк} /2⁄	7		
			0	1	f _{wcк} /2⁄	` 13		
			1	0	f _{wcк} /2⁄	<u>\</u> 14		
			1	1	f _{wcк} /(2	2^14 x (7bit W	TDR Value+1))
	WT	CK[1:0]	Determin	ne Source (Clock			
			WTCK1	WTCK0	Descri	ption		
			0	0	f _{SUB}			
			0	1	f _X /256			
			1	0	f _X /128			
1 1 f _x /64								
JOTE) f _x – S	System clock	frequency (Where fx= 4	4.19MHz)				

WTCR (Watch Timer Control Register) : 96H

NOIE) f_X . System clock frequency (Where fx= 4.19MHz)

 f_{SUB} – Sub clock oscillator frequency (32.768kHz)

 f_{WCK} – Selected Watch timer clock

 f_{LCD} – LCD frequency (Where f_X = 4.19MHz, WTCK[1:0]='10'; f_{LCD} = 1024Hz)

11.5 Timer 0

11.5.1 Overview

The 8-bit timer 0 consists of multiplexer, timer 0 counter register, timer 0 data register, timer 0 capture data register and timer 0 control register (T0CNT, T0DR, T0CDR, T0CR).

It has three operating modes:

- 8-bit timer/counter mode
- 8-bit PWM output mode
- 8-bit capture mode

The timer/counter 0 can be clocked by an internal or an external clock source (EC0). The clock source is selected by clock selection logic which is controlled by the clock selection bits (T0CK[2:0]).

- TIMER 0 clock source: $f_X/2$, 4, 8, 32, 128, 512, 2048 and EC0

In the capture mode, by EINT10, the data is captured into input capture data register (T0CDR). In timer/counter mode, whenever counter value is equal to T0DR, T0O port toggles. Also the timer 0 outputs PWM waveform through PWM0O port in the PWM mode.

TOEN	T0MS[1:0]	T0CK[2:0]	Timer 0
1	00	XXX	8 Bit Timer/Counter Mode
1	01	XXX	8 Bit PWM Mode
1	1X	XXX	8 Bit Capture Mode

Table 11-5 Timer 0 Operating Modes

11.5.2 8-Bit Timer/Counter Mode

The 8-bit timer/counter mode is selected by control register as shown in Figure 11.6.

The 8-bit timer have counter and data register. The counter register is increased by internal or external clock input. Timer 0 can use the input clock with one of 2, 4, 8, 32, 128, 512 and 2048 prescaler division rates (T0CK[2:0]). When the value of T0CNT and T0DR is identical in timer 0, a match signal is generated and the interrupt of Timer 0 occurs. T0CNT value is automatically cleared by match signal. It can be also cleared by software (T0CC).

The external clock (EC0) counts up the timer at the rising edge. If the EC0 is selected as a clock source by T0CK[2:0], EC0 port should be set to the input port by P52IO bit.

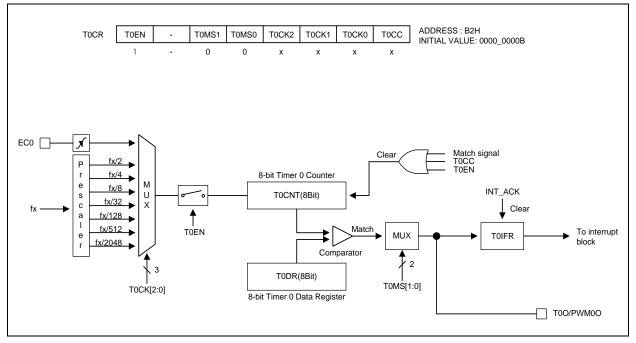


Figure 11.6 8-Bit Timer/Counter Mode for Timer 0

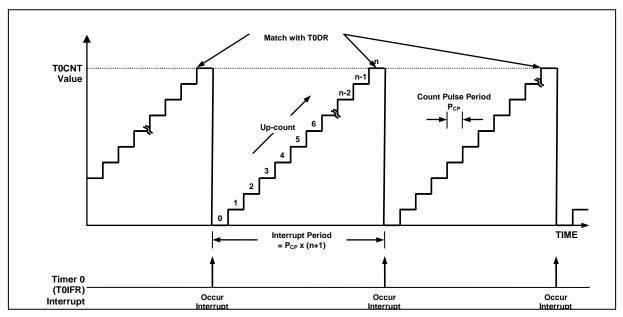


Figure 11.7 8-Bit Timer/Counter 0 Example

11.5.3 8-Bit PWM Mode

The timer 0 has a high speed PWM (Pulse Width Modulation) function. In PWM mode, T0O/PWM0O pin outputs up to 8-bit resolution PWM output. This pin should be configured as a PWM output by setting the T0O/PWM0O function by P5FSR[4:3] bits. In the 8-bit timer/counter mode, a match signal is generated when the counter value is identical to the value of T0DR. When the value of T0CNT and T0DR is identical in timer 0, a match signal is generated and the interrupt of timer 0 occurs. In PWM mode, the match signal does not clear the counter. Instead, it runs continuously, overflowing at "FFH", and then continues incrementing from "00H". The timer 0 overflow interrupt is generated whenever a counter overflow occurs. T0CNT value is cleared by software (T0CC) bit.

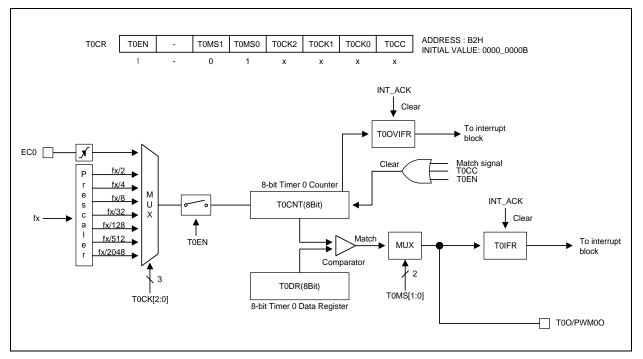


Figure 11.8 8-Bit PWM Mode for Timer 0

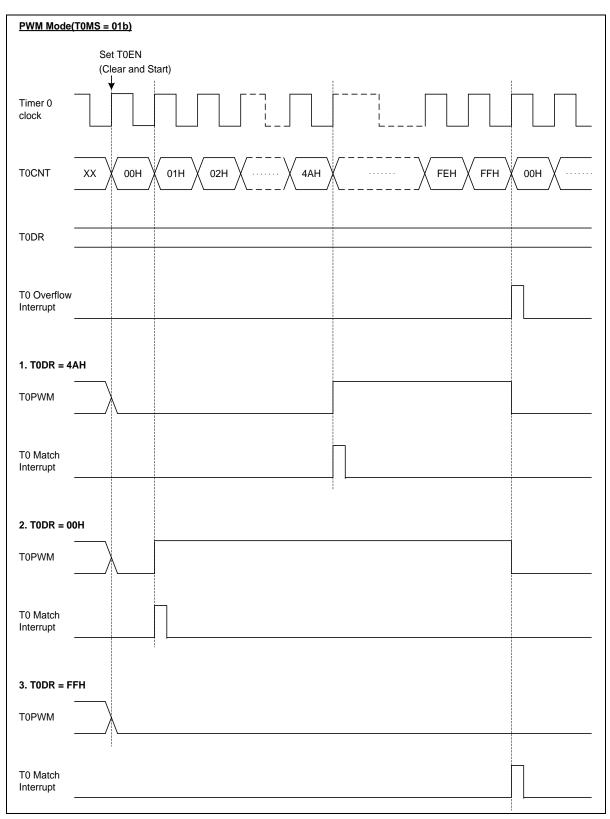


Figure 11.9 PWM Output Waveforms in PWM Mode for Timer 0

11.5.4 8-Bit Capture Mode

The timer 0 capture mode is set by T0MS[1:0] as '1x'. The clock source can use the internal/external clock. Basically, it has the same function as the 8-bit timer/counter mode and the interrupt occurs when T0CNT is equal to T0DR. T0CNT value is automatically cleared by match signal and it can be also cleared by software (T0CC).

This timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer.

The capture result is loaded into T0CDR. In the timer 0 capture mode, timer 0 output (T0O) waveform is not available.

According to EIPOL1 registers setting, the external interrupt EINT10 function is chosen. Of cource, the EINT10 pin must be set to an input port.

T0CDR and T0DR are in the same address. In the capture mode, reading operation reads T0CDR, not T0DR and writing operation will update T0DR.

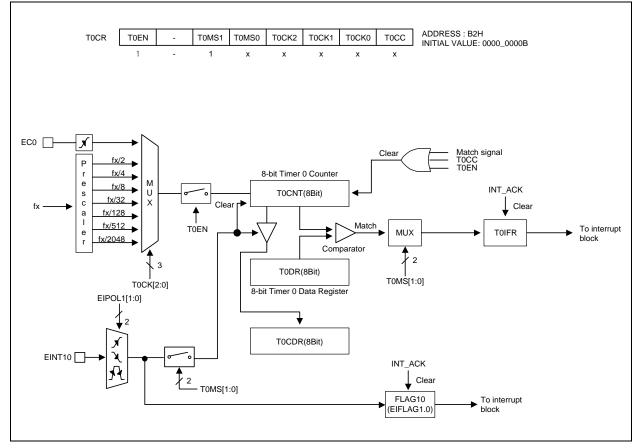


Figure 11.10 8-Bit Capture Mode for Timer 0

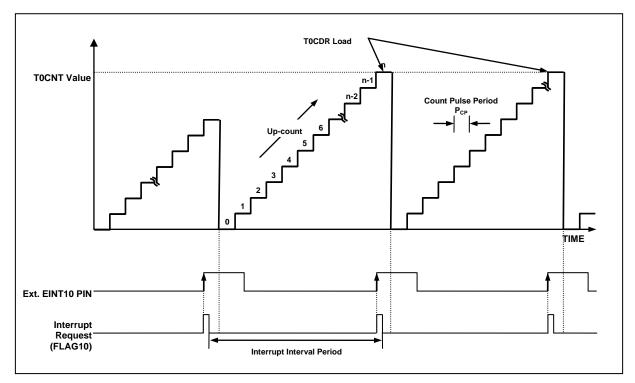


Figure 11.11 Input Capture Mode Operation for Timer 0

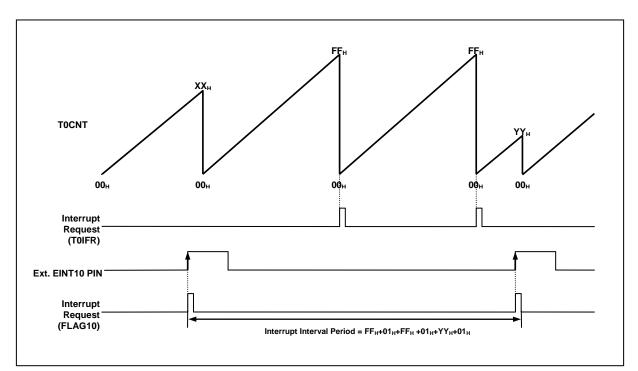


Figure 11.12 Express Timer Overflow in Capture Mode

11.5.5 Block Diagram

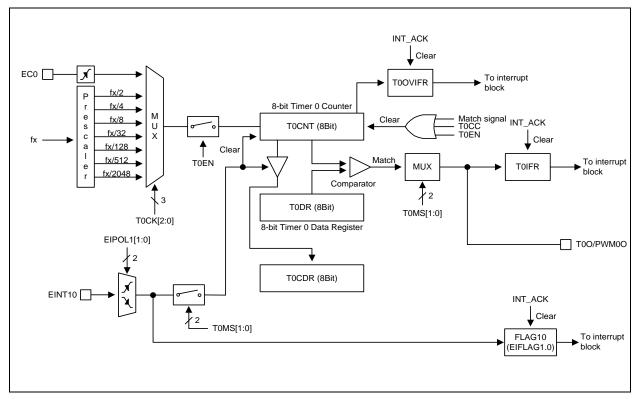


Figure 11.13 8-Bit Timer 0 Block Diagram

11.5.6 Register Map

Table 11-6 Timer 0 Register Map

Name	Address	Dir	Default	Description
TOCNT	взн	R	00H	Timer 0 Counter Register
T0DR	B4H	R/W	FFH	Timer 0 Data Register
T0CDR	B4H	R	00H	Timer 0 Capture Data Register
T0CR	B2H	R/W	00H	Timer 0 Control Register

11.5.6.1 Timer/Counter 0 Register Description

The timer/counter 0 register consists of timer 0 counter register (T0CNT), timer 0 data register (T0DR), timer 0 capture data register (T0CDR), and timer 0 control register (T0CR). T0IFR and T0OVIFR bits are in the external interrupt flag 1 register (EIFLAG1).

11.5.6.2 Register Description for Timer/Counter 0

7	6	5	4	3	2	1	0
T0CNT7	TOCNT6	T0CNT5	T0CNT4	T0CNT3	T0CNT2	T0CNT1	T0CNT0
R	R	R	R	R	R	R	R
						I	nitial value : 00
	тос	NT[7:0]	T0 Counter				
T0DR (Timer	0 Data Regis	ter) : B4H					
7	6	5	4	3	2	1	0
T0DR7	T0DR6	T0DR5	T0DR4	T0DR3	T0DR2	T0DR1	T0DR0
RW	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : FFI
	TOE	DR[7:0]	T0 Data				
T0CDR (Time	er 0 Capture I	Data Register	: Read Case,	Capture mod	le only) : B4H	l	
7	6	5	4	3	2	1	0
T0CDR7	TOCDR6	T0CDR5	T0CDR4	T0CDR3	T0CDR2	T0CDR1	T0CDR0
R	R	R	R	R	R	R	R
							nitial value : 00l
	тос	DR[7:0]	T0 Capture Da	ata			

T0CNT (Timer 0 Counter Register) : B3H

T0CR (Timer	0 Control Re	gister) : B2	2H						
7	6	5	4	4	3	2	1	0	
TOEN	– TOMS1		TON	/ISO	T0CK2	T0CK1	T0CK0	TOCC	
RW	– RW		R	W	RW	RW	RW	RW	
							I	nitial value : 00H	
	TOE	EN	Control	Timer 0					
			0	Timer	0 disable				
			1	Timer	0 enable (Counter clear ar	nd start)		
	TON	/IS[1:0]	Control	Timer 0	Operation	Mode			
			T0MS1	TOMS) Descrip	tion			
			0	0	Timer/c	ounter mode			
			0	1	PWM m	node			
			1	х	Capture mode				
	TOC	CK[2:0]	Select Timer 0 clock source. fx is a system clock frequency						
			T0CK2			Description			
			0	0	0	fx/2			
			0	0	1	fx/4			
			0	1	0	fx/8			
			0	1	1	fx/32			
			1	0	0	fx/128			
			1	0	1	fx/512			
			1	1	0	fx/2048			
			1	1	1	External Clock	(EC0)		
	тос		Clear tin						
			0	No effe			······		
			1			0 counter (Whe eared counter)	n write, auton	natically cleared	

NOTES) 1. Match Interrupt is generated in Capture mode.

2. Refer to the external interrupt flag 1 register (EIFLAG1) for the T0 interrupt flags.

11.6 Timer 1

11.6.1.1 Overview

The 16-bit timer 1 consists of multiplexer, timer 1 A data register high/low, timer 1 B data register high/low and timer 1 control register high/low (T1ADRH, T1ADRL, T1BDRH, T1BDRL, T1CRH, T1CRL).

It has four operating modes:

- 16-bit timer/counter mode
- 16-bit capture mode
- 16-bit PPG output mode (one-shot mode)
- 16-bit PPG output mode (repeat mode)

The timer/counter 1 can be clocked by an internal or an external clock source (EC1). The clock source is selected by clock selection logic which is controlled by the clock selection bits (T1CK[2:0]).

- TIMER 1 clock source: f_X/1, 2, 4, 8, 64, 512, 2048 and EC1

In the capture mode, by EINT11, the data is captured into input capture data register (T1BDRH/T1BDRL). Timer 1 outputs the comparision result between counter and data register through T1O port in timer/counter mode. Also Ttimer 1 outputs PWM wave form through PWM1O port in the PPG mode.

T1EN	P1FSRL[5:4]	T1MS[1:0]	T1CK[2:0]	Timer 1
1	11	00	XXX	16 Bit Timer/Counter Mode
1	00	01	XXX	16 Bit Capture Mode
		40	~~~~	16 Bit PPG Mode
1	11	10	XXX	(one-shot mode)
			~~~~	16 Bit PPG Mode
1	1 11 11	XXX	(repeat mode)	

Table 11-7 Timer 1 Operating Modes

#### 11.6.2 16-Bit Timer/Counter Mode

The 16-bit timer/counter mode is selected by control register as shown in Figure 11.14.

The 16-bit timer have counter and data register. The counter register is increased by internal or external clock input. Timer 1 can use the input clock with one of 1, 2, 4, 8, 64, 512 and 2048 prescaler division rates (T1CK[2:0]). When the value of T1CNTH, T1CNTL and the value of T1ADRH, T1ADRL are identical in Timer 1 respectively, a match signal is generated and the interrupt of Timer 1 occurs. The T1CNTH, T1CNTL value is automatically cleared by match signal. It can be also cleared by software (T1CC).

The external clock (EC1) counts up the timer at the rising edge. If the EC1 is selected as a clock source by T1CK[2:0], EC1 port should be set to the input port by P13IO bit.

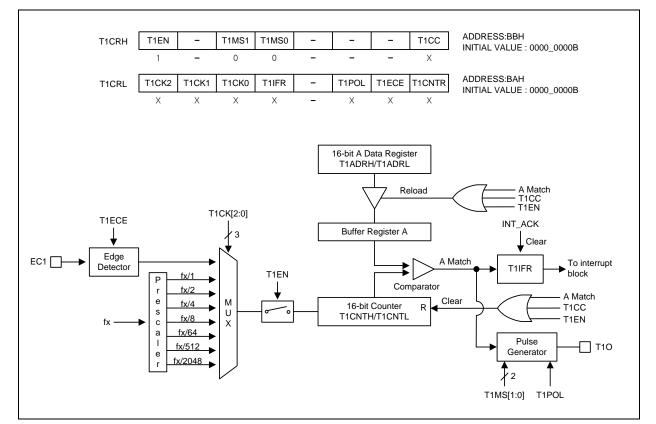



Figure 11.14 16-Bit Timer/Counter Mode for Timer 1

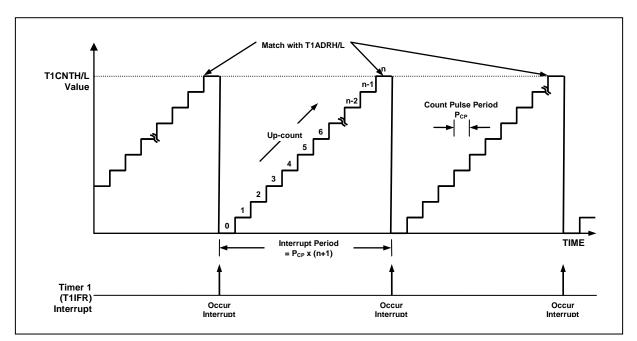



Figure 11.15 16-Bit Timer/Counter 1 Example

ΛΒΟ

# 11.6.3 16-Bit Capture Mode

The 16-bit timer 1 capture mode is set by T1MS[1:0] as '01'. The clock source can use the internal/external clock. Basically, it has the same function as the 16-bit timer/counter mode and the interrupt occurs when T1CNTH/T1CNTL is equal to T1ADRH/T1ADRL. The T1CNTH, T1CNTL values are automatically cleared by match signal. It can be also cleared by software (T1CC).

This timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer.

The capture result is loaded into T1BDRH/T1BDRL.

According to EIPOL1 registers setting, the external interrupt EINT11 function is chosen. Of cource, the EINT11 pin must be set as an input port.

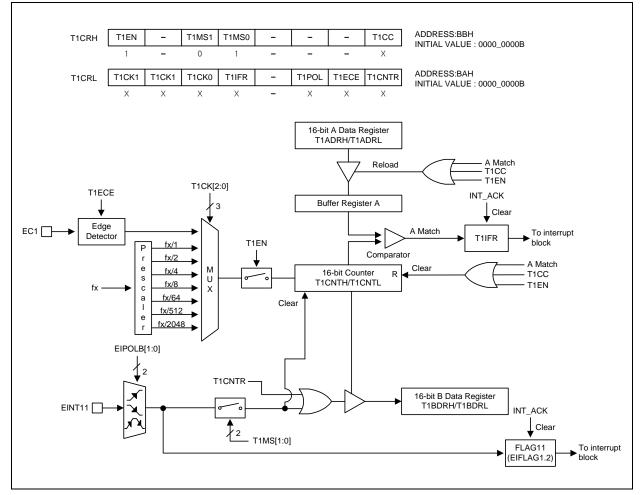
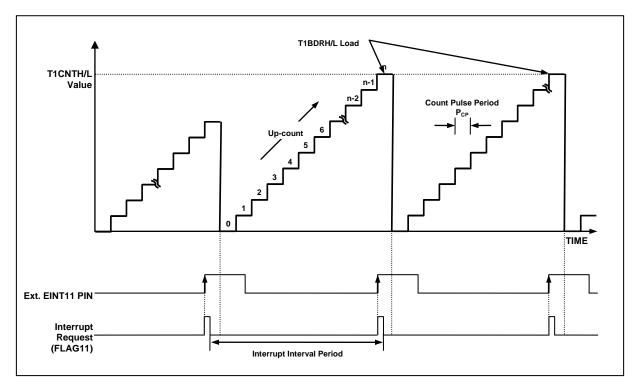




Figure 11.16 16-Bit Capture Mode for Timer 1







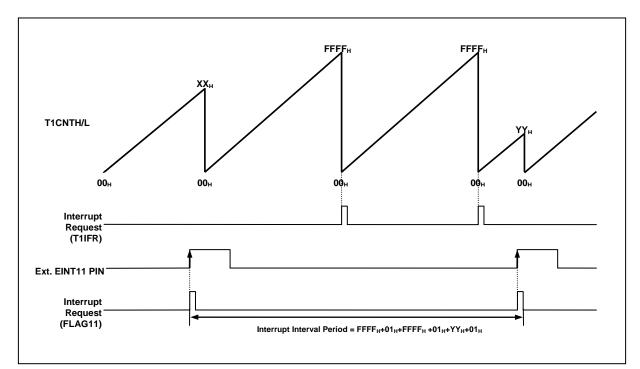



Figure 11.18 Express Timer Overflow in Capture Mode

## 11.6.4 16-Bit PPG Mode

The timer 1 has a PPG (Programmable Pulse Generation) function. In PPG mode, T1O/PWM1O pin outputs up to 16-bit resolution PWM output. This pin should be configured as a PWM output by setting P1FSRL[5:4] to '11'. The period of the PWM output is determined by the T1ADRH/T1ADRL. And the duty of the PWM output is determined by the T1BDRH/T1BDRL.

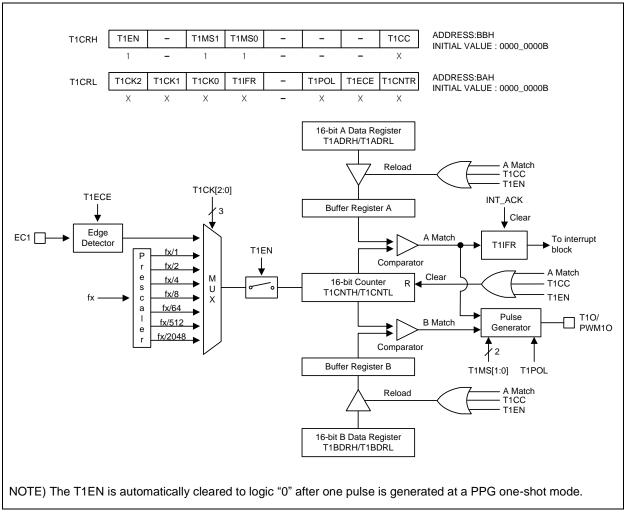



Figure 11.19 16-Bit PPG Mode for Timer 1



Repeat Mode(T1MS = 11b) and "Start High"(T1POL = 0b).	
Set T1EN Clear and Start	
Counter X 0 1 2 3 4 5	6 7 8 M-1 M 0 1 2 3
T1ADRH/L M	
T1 Interrupt	
1. T1BDRH/L(5) < T1ADRH/L	
PWM10 B Match	A Match
2. T1BDRH/L >= T1ADRH/L	Y
	¥
PWM10	A Match
3. T1BDRH/L = "0000H"	
PWM10 Low Level	A Match
PWM10 Low Level	A Match
PWM10       Low Level         One-shot Mode(T1MS = 10b) and "Start High"(T1POL = 0b).         Set T1EN       Clear and Start         Timer 1 clock       Image: Clear and	A Match
One-shot Mode(T1MS = 10b) and "Start High"(T1POL = 0b).         Set T1EN       Clear and Start         ↓       ↓	
One-shot Mode(T1MS = 10b) and "Start High"(T1POL = 0b).       Set T1EN       Clear and Start       Timer 1 clock	A Match
One-shot Mode(T1MS = 10b) and "Start High"(T1POL = 0b).       Set T1EN       ↓       Timer 1 clock	
$\begin{array}{c} \text{Discrete} \\ \hline \textbf{One-shot Mode(T1MS = 10b) and "Start High"(T1POL = 0b).} \\ \hline \textbf{Set T1EN} \\ \hline \textbf{Clear and Start} \\ \hline \textbf{Timer 1 clock} \\ \hline \textbf{Counter} \\ \hline \textbf{X} \\ \hline \textbf{0} \\ \hline \textbf{1} \\ \hline \textbf{2} \\ \hline \textbf{3} \\ \hline \textbf{4} \\ \hline \textbf{5} \\ \hline \end{array}$	
$\begin{array}{c} \text{Discrete} \\ \hline \textbf{Discrete} \\ \hline Discr$	
$\begin{array}{c} \text{One-shot Mode(T1MS = 10b) and "Start High"(T1POL = 0b).} \\ \text{Set T1EN} \\ \hline \\ \text{Timer 1 clock} \\ \text{Counter} \\ \hline \\ \text{X} \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \hline \\ \text{T1ADRH/L} \\ \hline \\ \text{M} \\ \hline \\ \text{T1 Interrupt} \\ \hline \end{array}$	
$\begin{array}{c} \text{Dne-shot Mode(T1MS = 10b) and "Start High"(T1POL = 0b).} \\ \text{Set T1EN} \\ \hline \\ \text{Timer 1 clock} \\ \text{Counter} \\ \hline \\ \text{X} \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \hline \\ \text{T1ADRH/L} \\ \hline \\ \text{I1 Interrupt} \\ \hline \\ \text{I. T1BDRH/L(5) < T1ADRH/L} \\ \hline \\ \hline \\ \text{Counter} \\ \hline \\ \text{T1 NDRH/L(5) < T1ADRH/L} \\ \hline \\ \hline \\ \text{T1 NDRH/L(5) < T1ADRH/L} \\ \hline \\ \hline \\ \text{T1 NDRH/L(5) < T1ADRH/L} \\ \hline \\ \hline \\ \text{T1 NDRH/L(5) < T1ADRH/L} \\ \hline \\ \hline \\ \text{T1 NDRH/L(5) < T1ADRH/L} \\ \hline \\ \hline \\ \hline \\ \text{T1 NDRH/L(5) < T1ADRH/L} \\ \hline \\ $	
One-shot Mode(T1MS = 10b) and "Start High"(T1POL = 0b).         Set T1EN       Clear and Start         Timer 1 clock       Image: Clear and Start         Counter       X       0       1       2       3       4       5         T1ADRH/L       M       Image: Clear and Start         Counter       X       0       1       2       3       4       5         T1ADRH/L       M       Image: Clear and Start         Counter       X       0       1       2       3       4       5         T1ADRH/L       M       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start         T1ADRH/L       M       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start         T1ADRH/L       M       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start         T1ADRH/L       M       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start         T1ADRH/L </td <td></td>	
One-shot Mode(T1MS = 10b) and "Start High"(T1POL = 0b).         Set T1EN       Clear and Start         Timer 1 clock       0       1       2       3       4       5         Counter       X       0       1       2       3       4       5         T1ADRH/L       M	6 7 8 M-1 M 0 A Match
One-shot Mode(T1MS = 10b) and "Start High"(T1POL = 0b).         Set T1EN       Clear and Start         Timer 1 clock       Image: Clear and Start         Counter       X       0       1       2       3       4       5         T1ADRH/L       M       Image: Clear and Start         Counter       X       0       1       2       3       4       5         T1ADRH/L       M       Image: Clear and Start         T1 clock       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start         T1 ADRH/L       M       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start         T1 Interrupt       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start         Image: Clear and Start       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start         Image: Clear and Start       Image: Clear and Start       Image: Clear and Start       Image: Clear and Start       Image: Clear	6 7 8 M-1 M 0 A Match

Figure 11.20 16-Bit PPG Mode Timming chart for Timer 1



## 11.6.5 Block Diagram

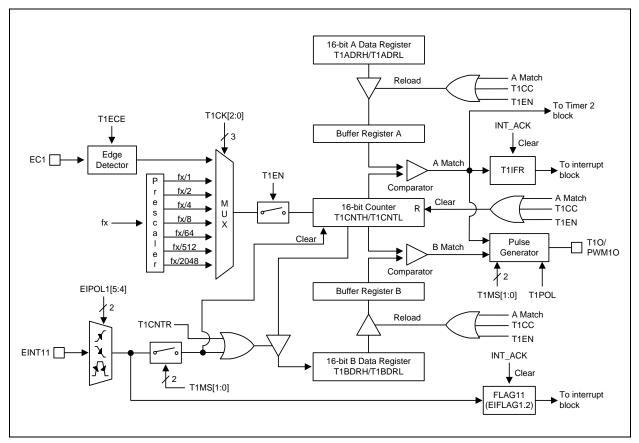



Figure 11.21 16-Bit Timer/Counter Mode for Timer 1 and Block Diagram

#### 11.6.6 Register Map

#### Table 11-8 Timer 2 Register Map

Name	Address	Dir	Default	Description
T1ADRH	BDH	R/W	FFH	Timer 1 A Data High Register
T1ADRL	ВСН	R/W	FFH	Timer 1 A Data Low Register
T1BDRH	BFH	R/W	FFH	Timer 1 B Data High Register
T1BDRL	BEH	R/W	FFH	Timer 1 B Data Low Register
T1CRH	BBH	R/W	00H	Timer 1 Control High Register
T1CRL	BAH	R/W	00H	Timer 1 Control Low Register



## 11.6.6.1 Timer/Counter 1 Register Description

The timer/counter 1 register consists of timer 1 A data high register (T1ADRH), timer 1 A data low register (T1ADRL), timer 1 B data high register (T1BDRH), timer 1 B data low register (T1BDRL), timer 1 control High register (T1CRH) and timer 1 control low register (T1CRL).

## 11.6.6.2 Register Description for Timer/Counter 1

7	6	5	4	3	2	1	0			
T1ADRH7	T1ADRH6	T1ADRH5	T1ADRH4	T1ADRH3	T1ADRH2	T1ADRH1	T1ADRH0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
						I	nitial value : F			
	T1 <i>4</i>	ADRH[7:0]	T1 A Data Hig	h Byte						
T1ADRL (Timer 1 A Data Low Register) : BCH										
7	6	5	4	3	2	1	0			
T1ADRL7	T1ADRL6	T1ADRL5	T1ADRL4	T1ADRL3	T1ADRL2	T1ADRL1	T1ADRL0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
1.7.4.4			10/00				10,00			
	10,00	10/00	10,00	10,11			nitial value : F			
10,00										
		ADRL[7:0]	T1 A Data Lov	v Byte		l	nitial value : F			
10,00		ADRL[7:0]		v Byte		l	nitial value : F			
1		ADRL[7:0]	T1 A Data Lov NOTE) Do not	v Byte		l	nitial value : F			
		ADRL[7:0]	T1 A Data Low NOTE) Do not PPG mode	v Byte		l	nitial value : F			
	T1 <i>4</i>	ADRL[7:0]	T1 A Data Low NOTE) Do not PPG mode	v Byte		l	nitial value : F			
f1BDRH (Tir	T14 ner 1 B Data I	ADRL[7:0] High Register	T1 A Data Lov NOTE) Do not PPG mode	v Byte write "0000H	" in the T1ADI	RH/T1ADRL r	nitial value : F egister when			
1BDRH (Tin 7	T1 <i>F</i> ner 1 B Data I 6	ADRL[7:0] High Register 5	T1 A Data Low NOTE) Do not PPG mode ) : BFH 4	v Byte write "0000H 3	" in the T1ADI	RH/T1ADRL r	nitial value : F egister when 0			
T <b>IBDRH (T</b> in 7 TIBDRH7	T14 ner 1 B Data I 6 T1BDRH6	ADRL[7:0] High Register 5 T1BDRH5	T1 A Data Low NOTE) Do not PPG mode ) : BFH 4 T1BDRH4	v Byte write "0000H" <b>3</b> T1BDRH3	" in the T1ADI <b>2</b> T1BDRH2	T1BDRH1 RW	nitial value : F egister when 0 T1BDRH0			

#### T1BDRL (Timer 1 B Data Low Register) : BEH

7	6	5	4	3	2	1	0
T1BDRL7	T1BDRL6	T1BDRL5	T1BDRL4	T1BDRL3	T1BDRL2	T1BDRL1	T1BDRL0
R/W							
						l	nitial value : FFF

T1BDRL[7:0] T1 B Data Low Byte



T1CRH (Timer 1 Control High Register) : BBH											
7	6	5	4	4	3	2	1	0			
T1EN	-	T1MS1	T1N	/ISO	_	-	-	T1CC			
RW	-	R/W	RW		-	-	-	RW			
								Initial value : 00			
	T1E	EN	Control	Timer 1							
			0	Timer 1 disable							
			1	Timer ⁻	1 enable (Co	unter clear ar	nd start)				
	T1M	T1MS[1:0]		Timer 1 (	Operation Mo	ode					
			T1MS1	T1MS0	Description						
			0	0	Timer/cou	nter mode (T	1O: toggle at A	A match)			
			0	1	Capture m	ode (The An	natch interrupt	can occur)			
			1	0	PPG one-	shot mode (P	WM1O)				
			1	1	PPG repea	at mode (PWI	M1O)				
	T10	00	Clear Ti	mer 1 Co	ounter						
			0	No effe	ect						
			1			ounter (Wher	n write, automa ounter)	atically			





7	6	5		4	3		2	1	0
T1CK2	T1CK1	T1CK0	T1	IFR	-		T1POL	T1ECE	T1CNTR
R/W	R/W	R/W	R	W	_		RW	RW	RW
									nitial value :
	T10	CK[2:0]	Select T	imer 1	clock sou	urce.	fx is main sys	tem clock free	luency
			T1CK2	T1CK	1 T1Ck	(0 D	escription		
			0	0	0	fx	/2048		
			0	0	1	fx	/512		
			0	1	0	fx	/64		
			0	1	1	fx	/8		
			1	0	0	fx	:/4		
			1	0	1	fx	/2		
			1	1	0	fx	x/1		
			1	1	1	E	xternal clock	(EC1)	
	T1I	FR					his bit become INT_ACK sign	es '1'. For cle nal.	aring bit, wri
			0	T1 Int	errupt no	o gen	eration		
			1	T1 Int	errupt ge	enera	tion		
	T1F	POL	T10/PW	/M10 P	olarity S	electi	on		
			0	Start	High (T1	O/PV	M1O is low le	evel at disable	e)
			1	Start	_ow (T10	O/PW	/M1O is high I	evel at disable	e)
	T1E	ECE	Timer 1	Externa	I Clock I	Edge	Selection		
			0	Exteri	nal clock	fallin	g edge		
			1		nal clock				
	T10	CNTR			r Read C	Contro	bl		
			0	No ef					
			1				value to the E ed "0" after be	data register ing loaded)	r (When writ

# 11.7 Timer 2

## 11.7.1.1 Overview

The 16-bit timer 2 consists of multiplexer, timer 2 A data high/low register, timer 2 B data high/low register and timer 2 control high/low register (T2ADRH, T2ADRL, T2BDRH, T2BDRL, T2CRH, T2CRL).

It has four operating modes:

- 16-bit timer/counter mode
- 16-bit capture mode
- 16-bit PPG output mode (one-shot mode)
- 16-bit PPG output mode (repeat mode)

The timer/counter 2 can be divided clock of the system clock selectd from prescaler output and T1 A Match (timer 1 A match signal). The clock source is selected by clock selection logic which is controlled by the clock selection bits (T2CK[2:0]).

- TIMER 2 clock source: f_x/1, 2, 4, 8, 32, 128, 512 and T1 A Match

In the capture mode, by EINT12, the data is captured into input capture data register (T2BDRH/T2BDRL). In timer/counter mode, whenever counter value is equal to T2ADRH/L, T2O port toggles. Also the timer 2 outputs PWM wave form to PWM2O port in the PPG mode.

T2EN	P1FSRL[3:2]	T2MS[1:0]	T2CK[2:0]	Timer 2
1	11	00	XXX	16 Bit Timer/Counter Mode
1	00	01	XXX	16 Bit Capture Mode
4	44	10	VVV	16 Bit PPG Mode
1	11	10	XXX	(one-shot mode)
4	11			16 Bit PPG Mode
1	11	11	XXX	(repeat mode)

#### Table 11-9 Timer 2 Operating Modes



# 11.7.2 16-Bit Timer/Counter Mode

The 16-bit timer/counter mode is selected by control register as shown in Figure 11.22.

The 16-bit timer have counter and data register. The counter register is increased by internal or timer 1 A match clock input. Timer 2 can use the input clock with one of 1, 2, 4, 8, 32, 128, 512 and T1 A Match prescaler division rates (T2CK[2:0]). When the values of T2CNTH/T2CNTL and T2ADRH/T2ADRL are identical in timer 2, a match signal is generated and the interrupt of Timer 2 occurs. The T2CNTH/T2CNTL values are automatically cleared by match signal. It can be also cleared by software (T2CC).

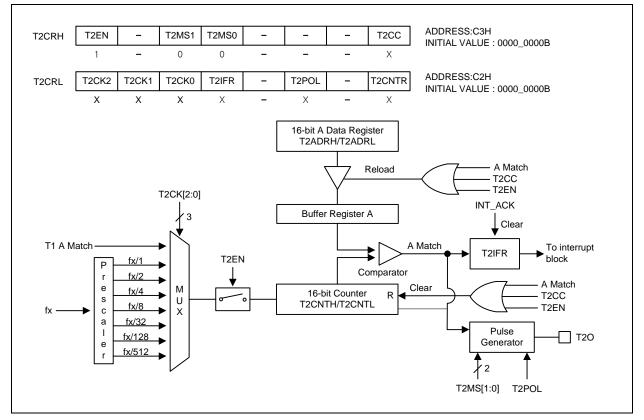



Figure 11.22 16-Bit Timer/Counter Mode for Timer 2



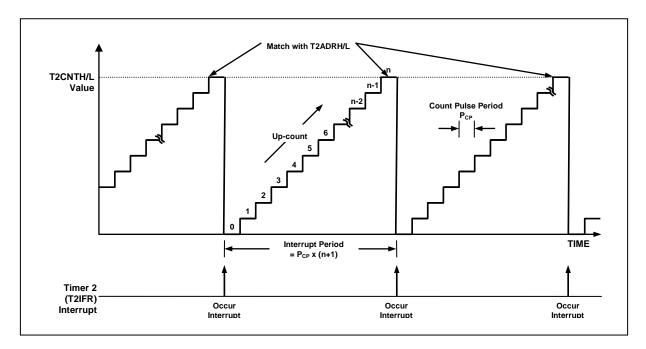



Figure 11.23 16-Bit Timer/Counter 2 Example



## 11.7.3 16-Bit Capture Mode

The timer 2 capture mode is set by T2MS[1:0] as '01'. The clock source can use the internal clock. Basically, it has the same function as the 16-bit timer/counter mode and the interrupt occurs when T2CNTH/T2CNTL is equal to T2ADRH/T2ADRL. T2CNTH/T2CNTL values are automatically cleared by match signal and it can be also cleared by software (T2CC).

This timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer.

The capture result is loaded into T2BDRH/T2BDRL. In the timer 2 capture mode, timer 2 output(T2O) waveform is not available.

According to EIPOL1 registers setting, the external interrupt EINT12 function is chosen. Of cource, the EINT12 pin must be set to an input port.

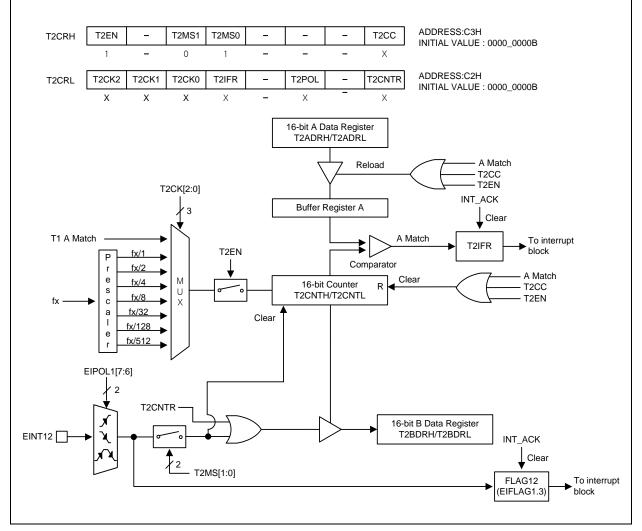



Figure 11.24 16-Bit Capture Mode for Timer 2



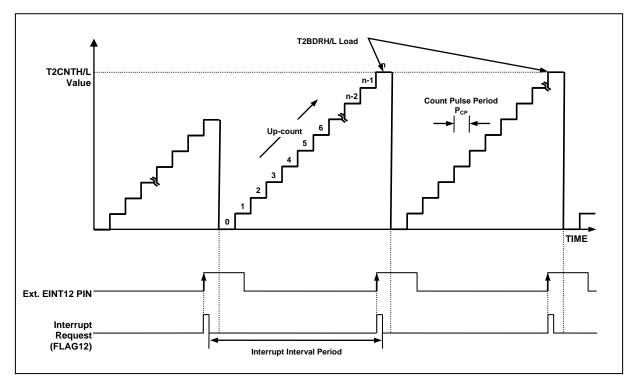



Figure 11.25 Input Capture Mode Operation for Timer 2

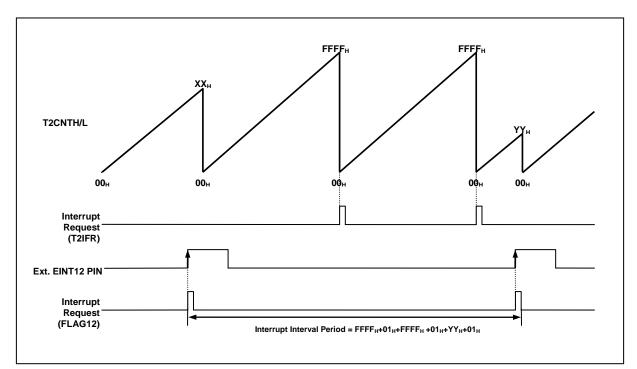



Figure 11.26 Express Timer Overflow in Capture Mode



## 11.7.4 16-Bit PPG Mode

The timer 2 has a PPG (Programmable Pulse Generation) function. In PPG mode, the T2O/PWM2O pin outputs up to 16-bit resolution PWM output. This pin should be configured as a PWM output by set P1FSRL[3:2] to '11'. The period of the PWM output is determined by the T2ADRH/T2ADRL. And the duty of the PWM output is determined by the T2BDRH/T2BDRL.

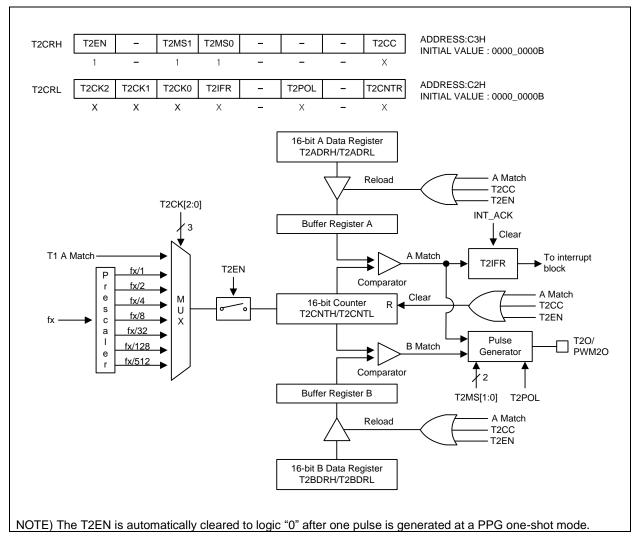



Figure 11.27 16-Bit PPG Mode for Timer 2



Repeat Mode(T2MS = 11b) and "Start High"(T2POL = 0b).	
Set T2EN Lear and Start	
Timer 2 clock	
Counter $X$ 0 1 2 3 4	5 6 7 8 M-1 M 0 1 2 3
T2ADRH/L M	
T2 Interrupt	
1. T2BDRH/L(5) < T2ADRH/L	
PWM2O B	Match A Match
2. T2BDRH/L >= T2ADRH/L	
PWM20	A Match
	A Match
3. T2BDRH/L = "0000H"	
PWM2O Low Level	A Match
One-shot Mode(T2MS = 10b) and "Start High"(T2POL = 0b Set T2EN ↓ Clear and Start	<u>).</u>
Timer 2 clock	
Counter $X$ $0$ $1$ $2$ $3$ $4$ $5$	6 7 8 M-1 M 0
T2ADRH/L M	
T2 Interrupt	
1. T2BDRH/L(5) < T2ADRH/L	
PWM2O B	Match A Match
2. T2BDRH/L >= T2ADRH/L	
PWM2O	A Match
3. T2BDRH/L = "0000H"	
PWM2O Low Level	A Match

Figure 11.28 16-Bit PPG Mode Timming chart for Timer 2



# 11.7.5 Block Diagram

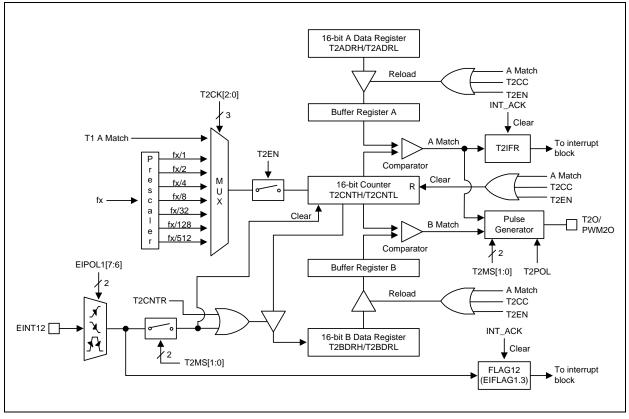



Figure 11.29 16-Bit Timer/Counter Mode for Timer 2 and Block Diagram

# 11.7.6 Register Map

#### Table 11-10 Timer 3 Register Map

Name	Address	Dir	Default	Description
T2ADRH	C5H	R/W	FFH	Timer 2 A Data High Register
T2ADRL	C4H	R/W	FFH	Timer 2 A Data Low Register
T2BDRH	C7H	R/W	FFH	Timer 2 B Data High Register
T2BDRL	C6H	R/W	FFH	Timer 2 B Data Low Register
T2CRH	СЗН	R/W	00H	Timer 2 Control High Register
T2CRL	C2H	R/W	00H	Timer 2 Control Low Register

# 11.7.6.1 Timer/Counter 2 Register Description

The timer/counter 2 register consists of timer 2 A data high register (T2ADRH), timer 2 A data low register (T2ADRL), timer 2 B data high register (T2BDRH), timer 2 B data low register (T2BDRL), timer 2 control High register (T2CRH) and timer 2 control low register (T2CRL).

# 11.7.6.2 Register Description for Timer/Counter 2

7	6	5	4	3	2	1	0			
T2ADRH7	T2ADRH6	T2ADRH5	T2ADRH4	T2ADRH3	T2ADRH2	T2ADRH1	T2ADRH0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Initial value : FFH T2ADRH[7:0] T2 A Data High Byte T2ADRL (Timer 2 A Data Low Register) : C4H										
12ADRL (11m 7	ner 2 A Data L 6	_ow Register	) : C4H 4	3	2	1	0			
T2ADRL7	T2ADRL6	T2ADRL5	T2ADRL4	T2ADRL3	T2ADRL2	T2ADRL1	T2ADRL0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
			NOTE) Do not PPG mode.	: write "0000H'	in the T2ADI	RH/T2ADRL n	egister when			
	ner 2 B Data I	nigh Registe	-		2	1				
7	6	5	4	3	2		0			
7 T2BDRH7	6 T2BDRH6	5 T2BDRH5	4 T2BDRH4	3 T2BDRH3	Z T2BDRH2	T2BDRH1	0 T2BDRH0			
	-	-		-		T2BDRH1 R/W	T2BDRH0 R/W			
T2BDRH7 R/W	T2BDRH6 R/W	T2BDRH5 R/W 3DRH[7:0]	T2BDRH4 R/W T2 B Data Hig	T2BDRH3 R/W	T2BDRH2	T2BDRH1 R/W	T2BDRH0			

7	6	5	4	3	2	1	0
T2BDRL7	T2BDRL6	T2BDRL5	T2BDRL4	T2BDRL3	T2BDRL2	T2BDRL1	T2BDRL0
R/W							
							nitial value : FF

T2BDRL[7:0] T2 B Data Low



		• •								
7	6	5	4	Ļ	3	2	1	0		
T2EN	_	T2MS1	T2N	/IS0	_	_	_	T2CC		
RW	_	R/W	R	W	-	_	_	RW		
							I	nitial value : 00		
	T2E	EN	Control 7	Timer 2						
			0	Timer	2 disable					
			1	Timer	2 enable (Co	unter clear an	nd start)			
	T2	MS[1:0]	Control Timer 2 Operation Mode							
			T2MS1	T2MS0	) Description	Description				
		(	0	0	Timer/counter mode (T2O: toggle at A match)					
		(	0	1	Capture m	ode (The A m	atch interrupt	can occur)		
			1	0	PPG one-s	shot mode (P\	NM2O)			
			1	1	PPG repea	at mode (PWN	M2O)			
	T20	00	Clear Tir	mer 2 Co	ounter					
			0	No effe	ect					
			1 Clear the Timer 2 counter (When v				write, automa	atically		
			cleared "0" after being cleared counter)							

#### T2CRH (Timer 2 Control High Register) : C3H



7	6	5	4	4	3	2	1	0	
T2CK2	T2CK1	T2CK0	T2	IFR	_	T2POL	_	T2CNTR	
R/W	R/W	R/W	R/	W	-	RW	-	RW	
							I	nitial value : 00H	
	T20	CK[2:0]	Select T	ïmer 2 cl	ock sourc	e. fx is main sys	tem clock freq	uency	
			T2CK2	T2CK1	T2CK0	Description			
			0	0	0	fx/512			
			0	0	1	fx/128			
			0	1	0	fx/32			
			0	1	1	fx/8			
			1	0	0	fx/4			
			1	0	1	fx/2			
			1	1	0	fx/1			
			1	1	1	T1 A Match			
	T2I	FR		nen T2 Match Interrupt occurs, this bit becomes '1'. For clearing bit, te '0' to this bit or auto clear by INT_ACK signal.					
			0	T2 inter	rrupt no g	eneration			
			1	T2 inter	rrupt gene	eration			
	T2F	POL	T2O/PW	/M2O Po	larity Sele	ection			
			0	Start H	igh (T2O/	PWM2O is low le	evel at disable	e)	
			1	Start Lo	ow (T2O/F	PWM2O is high I	evel at disable	e)	
	T20	NTR	Timer 2	Counter	Read Cor	ntrol			
			0	No effe	ct				
			1			r value to the B ared "0" after be		· (When write,	

# T2CRL (Timer 2 Control Low Register) : CAH



### 11.8 Timer 3, 4

#### 11.8.1 Overview

Timer 3 and timer 4 can be used either two 8-bit timer/counter or one 16-bit timer/counter with combine them. Each 8-bit timer/event counter module has multiplexer, comparator, 8-bit timer data register, 8-bit counter register, control register and capture data register (T3CNT, T3DR, T3CAPR, T3CR, T4CNT, T4DR, T4CAPR, T4CR). For PWM, it has PWM register (T4PPRL. T4PPRH, T4ADRL, T4ADRH, T4BDRL, T4BDRH, T4CDRL, T4CDRH, T4DLYA, T4DLYB, T4DLYC).

It has five operating modes:

- 8-bit timer/counter mode
- 8-bit capture mode
- 16-bit timer/counter mode
- 16-bit capture mode
- 10-bit PWM mode

The timer/counter 3 and 4 can be clocked by an internal or an external clock source (EC3). The clock source is selected by clock selection logic which is controlled by the clock selection bits (T3CK[2:0], T4CK[3:0]). Also the timer/counter 4 can use more clock sources than timer/counter 3.

- TIMER 3 clock source:  $f_{X}\!/2,\,4,\,8,\,32,\,128,\,512,\,2048$  and EC3
- TIMER 4 clock source: f_x/1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384 and T3 clock

In the capture mode, by EINT0/EINT1, the data is captured into input capture data register (T3CAPR, T4CAPR). In 8-bit timer/counter 3/4 mode, whenever counter value is equal to T3DR/T4DR, T3O/T4O port toggles. Also In 16-bit timer/counter 3 mode,

The timer 3 outputs the comparison result between counter and data register through T3O port. The PWM wave form to PWMAA, PWMAB, PWMBA, PWMBB, PWMCA, PWMCB Port (6-channel) in the PWM mode.

16BIT	T3MS	T4MS	PWM4E	T3CK[2:0]	T4CK[3:0]	Timer 3 Timer 4		
0	0	0	0	XXX	XXXX	8 Bit Timer/Counter Mode	8 Bit Timer/Counter Mode	
0	1	1	0	XXX	XXXX	8 Bit Capture Mode	8 Bit Capture Mode	
1	0	0	0	XXX	XXXX	16 Bit Tmer/Counter Mode		
1	1	1	0	XXX	XXXX	16 Bit Capture Mode		
0	х	Х	1	XXX	XXXX	10 Bit PWM Mode		

Table	11-11	Timer	3.4	I O	perating	Modes
Table		T IIIICI	υ, -		peraimg	moucs

# 11.8.2 8-Bit Timer/Counter 3, 4 Mode

The 8-bit timer/counter mode is selected by control register as shown in Figure 11.30.

The two 8-bit timers have each counter and data register. The counter register is increased by internal or external clock input. Timer 3 can use the input clock with one of 2, 4, 8, 32, 128, 512, 2048 and EC3 prescaler division rates (T3CK[2:0]). Timer 4 can use the input clock with one of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384 and timer 3 clock prescaler division rates (T4CK[3:0]). When the value of T3CNT, T4CNT and T3DR, T4DR are respectively identical in Timer 3, 4, the interrupt Timer 3, 4 occurs.

The external clock (EC3) counts up the timer at the rising edge. If the EC3 is selected as a clock source by T3CK[2:0], EC3 port should be set to the input port by P00IO bit. Timer 4 can't use the external EC3 clock.

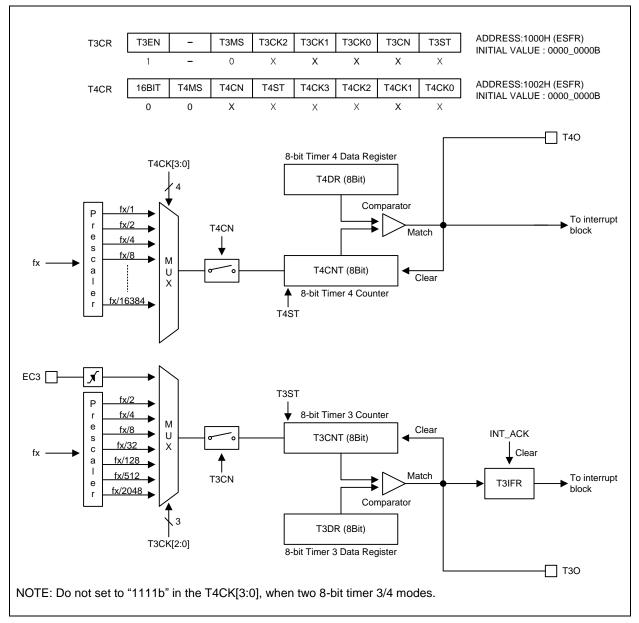



Figure 11.30 8-Bit Timer/Counter Mode for Timer 3, 4



# 11.8.3 16-Bit Timer/Counter 3 Mode

The 16-bit timer/counter mode is selected by control register as shown in Figure 11.31.

The 16-bit timer have counter and data register. The counter register is increased by internal or external clock input. Timer 3 can use the input clock with one of 2, 4, 8, 32, 128, 512 and 2048 prescaler division rates (T3CK[2:0]).

A 16-bit timer/counter register T3CNT, T4CNT are incremented from 0000H to FFFFH until it matches T3DR, T4DR and then cleared to 0000H. The match signal output generates the Timer 3 Interrupt (No timer 4 interrupt). The clock source is selected from T3CK[2:0] and 16BIT bit must be set to '1'. Timer 3 is LSB 8-bit, the timer 4 is MSB 8-bit.

The external clock (EC3) counts up the timer at the rising edge. f the EC3 is selected as a clock source by T3CK[2:0], EC3 port should be set to the input port by P00IO bit.

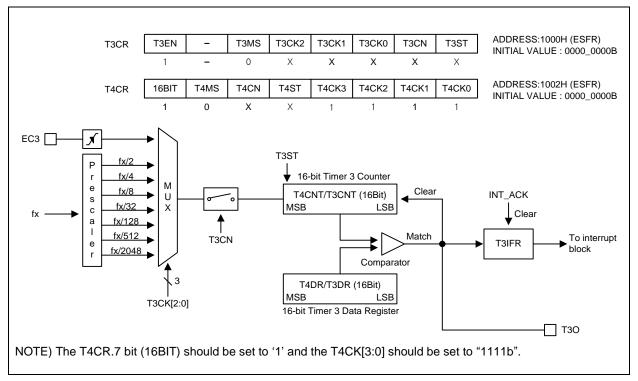



Figure 11.31 16-Bit Timer/Counter Mode for Timer 3

## 11.8.4 8-Bit Timer 3, 4 Capture Mode

The 8-bit Capture 3 and 4 mode is selected by control register as shown in Figure 11.32.

The timer 3, 4 capture mode is set by T3MS, T4MS as '1'. The clock source can use the internal/external clock. Basically, it has the same function as the 8-bit timer/counter mode and the interrupt occurs when T3CNT, T4CNT is equal to T3DR, T4DR. The T3CNT, T4CNT value is automatically cleared by match signal.

This timer interrupt in capture mode is very useful when the pulse width of captured signal is wider than the maximum period of timer.

The capture result is loaded into T3CAPR, T4CAPR. In the timer 3, 4 capture mode, timer 3, 4 output (T3O, T4O) waveform is not available.

According to the EIPOL0L register setting, the external interrupt EINT0 and EINT1 function is chose. Of cource, the EINT0 and EINT1 pins must be set to an input port.

The T3CAPR and T3DR are in the same address. In the capture mode, reading operation reads T3CAPR, not T3DR and writing operation will update T3DR. The T4CAPR has the same function.



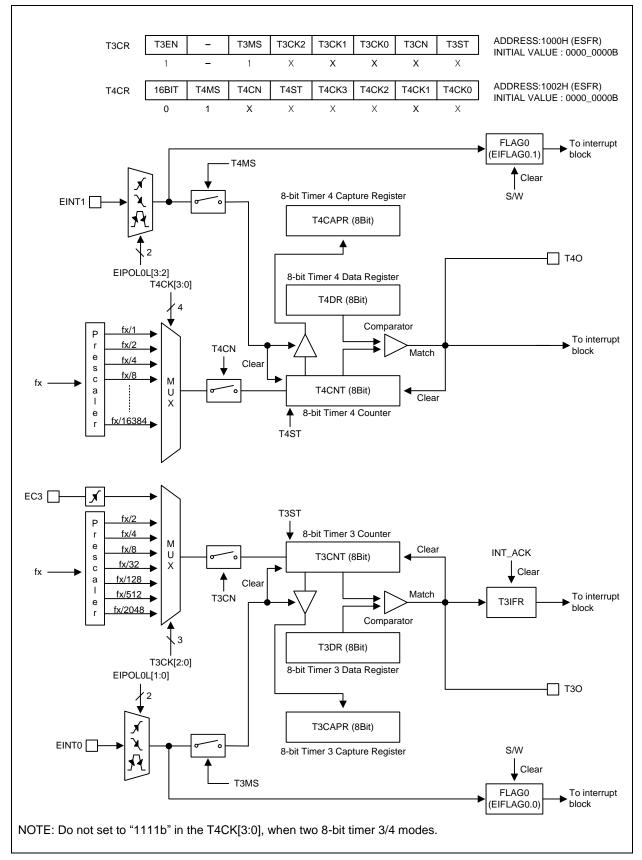



Figure 11.32 8-Bit Capture Mode for Timer 3, 4

# 11.8.5 16-Bit Timer 3 Capture Mode

The 16-bit Capture mode is selected by control register as shown in Figure 11.33.

The 16-bit capture mode is the same operation as 8-bit capture mode, except that the timer register uses 16 bits. The 16-bit timer 3 capture mode is set by T3MS, T4MS as '1'. The clock source is selected from T3CK[2:0] and 16BIT bit must be set to '1'. Timer 3 is LSB 8-bit, the timer 4 is MSB 8-bit.

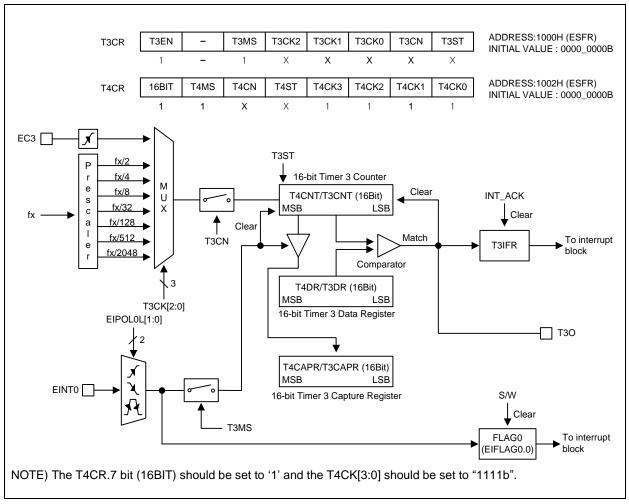



Figure 11.33 16-Bit Capture Mode for Timer 3



# 11.8.6 10-Bit Timer 4 PWM Mode

The timer 4 has a high speed PWM (Pulse Width Modulation) function. In PWM mode, the 6-channel pins output up to 10-bit resolution PWM output. This pin should be configured as a PWM output by set PWM4E to '1'. When the value of 2bit +T4CNT and T4PPRH/L are identical in timer 4, a period match signal is generated and the interrupt of timer 4 occurs. In 10-bit PWM mode, A, B, C, bottom(underflow) match signal are generated when the 10-bit counter value are identical to the value of T4xADRH/L. The period of the PWM output is determined by the T4PPRH/L (PWM period register), T4xDRH/L (each channel PWM duty register).

PWM Period = [T4PPRH/T4PPRL ] X Source Clock PWM Duty(A-ch) = [ T4ADRH/T4ADRL ] X Source Clock

	Frequency							
Resolution	T4CK[3:0]=0001 (250ns)	T4CK[3:0]=0010 (500ns)	T4CK[3:0]=0100 (2us)					
10 Bit	3.9KHz	1.95KHz	0.49KHz					
9 Bit	7.8KHz	3.9KHz	0.98KHz					
8 Bit	15.6KHz	7.8KHz	1.95KHz					
7 Bit	31.2KHz	15.6KHz	3.91KHz					

### Table 11-12 PWM Frequency vs. Resolution at 8 MHz

The POLxA bit of T4PCR3 register decides the polarity of duty cycle. If the duty value is set same to the period value, the PWM output is determined by the bit POLxA (1: High, 0: Low). And if the duty value is set to "00H", the PWM output is determined by the bit POLxA (1: Low, 0: High).

				1	
PHLT:PxxOE	POLxA	POLBO	POLxB	PWM4xA Pin Output	PWM4xB Pin Output
		0	0	Low-level	Low-level
	0	0	1	Low-level	High-level
04.40.00		1	1 x Low-level		Low-level
0x, x0, 00	1	0	0	High-level	High-level
		0	1	High-level	Low-level
		1	х	High-level	High-level
	0	×	0	Positive-phase	Positive-Phase
44	0	Х	1	Positive-phase	Negative-Phase
11	4	×	0	Negative-Phase	Negative-Phase
	I	Х	1	Negative-Phase	Positive-phase

#### Table 11-13 PWM Channel Polarity



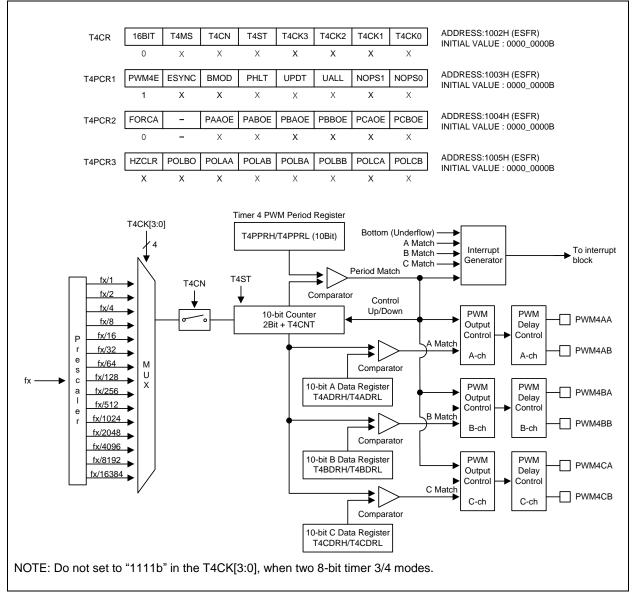



Figure 11.34 10-Bit PWM Mode (Force 6-ch)

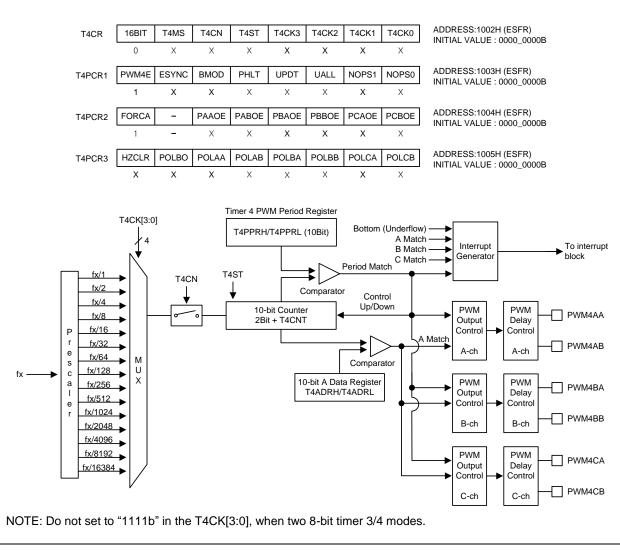



Figure 11.35 10-Bit PWM Mode (Force All-ch)

ΛΒΟν



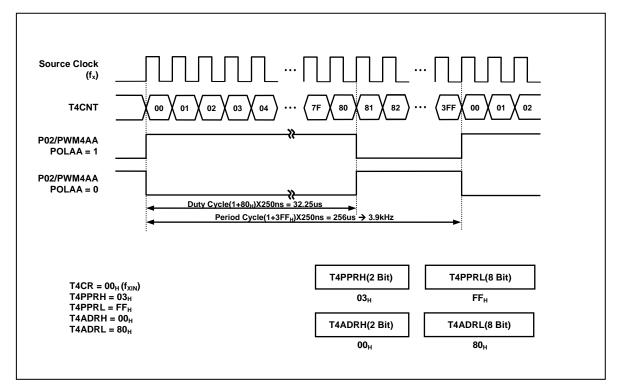



Figure 11.36 Example of PWM at 4 MHz

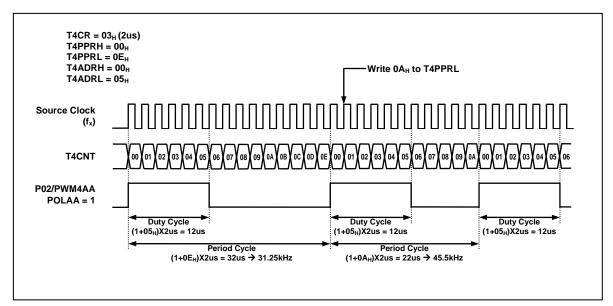



Figure 11.37 Example of Changing the Period in Absolute Duty Cycle at 4 MHz

### Update period & duty register value at once

The period and duty of PWM comes to move from temporary registers to T4PPRH/L (PWM Period Register) and T4ADRH/L/T4BDRH/L/T4CDRH/L (PWM Duty Register) when always period match occurs. If you want that the period and duty is immediately changed, the UPDT bit in the T4PCR1 register must set to '1'. It should be noted that it needs the 3 cycle of timer clock for data transfer in the internal clock synchronization circuit. So the update data is written before 3 cycle of timer clock to get the right output waveform.



#### Phase correction & Frequency correction

On operating PWM, it is possible that it is changed the phase and the frequency by using BMOD bit (back-to-back mode) in T4PCR1 register. (Figure 1.38, Figure 11.39, Figure 11.40 referred)

In the back-to-back mode, the counter of PWM repeats up/down count. In fact, the effective duty and period becomes twofold of the register set values. (Figure 1.38, Figure 11.39 referred)

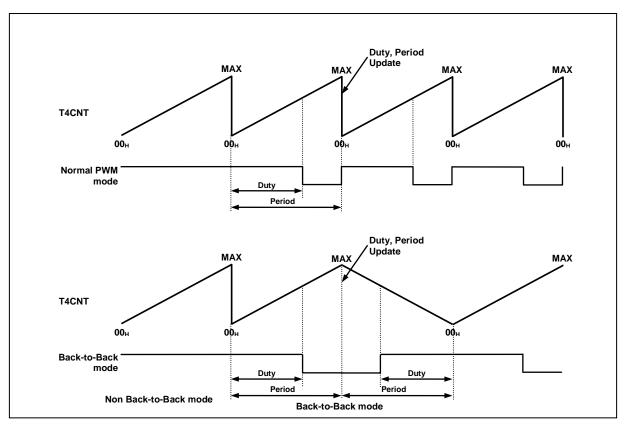



Figure 11.38 Example of PWM Output Waveform

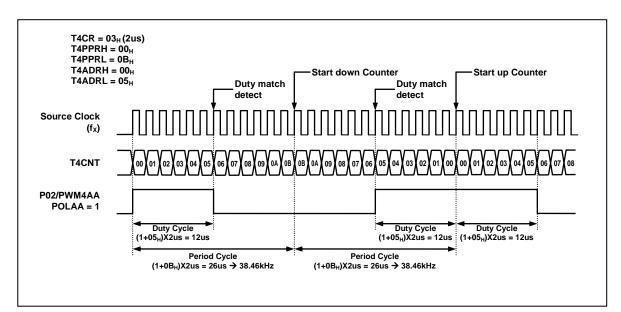



Figure 11.39 Example of PWM waveform in Back-to-Back mode at 4 MHz



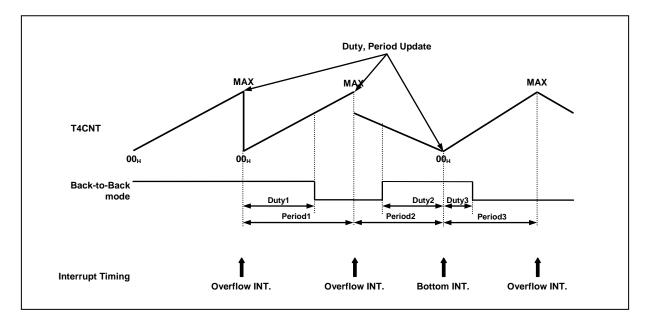



Figure 11.40 Example of Phase Correction and Frequency correction of PWM

### External Sync

If using ESYNC bit of T4PCR1 register, it is possible to synchronize the output of PWM from external signal.

If ESYNC bit sets to '1', the external signal moves to PWM module through the BLNK pin. If BLNK signal is low, immediately PWM output becomes a reset value, and internal counter becomes reset. If BLNK signal returns to '1', the counter is started again and PWM output is normally generated. (Figure 11.41 referred)

### **PWM Halt**

If using PHLT bit of T4PCR1 register, it is possible to stop PWM operation by the software. During PHLT bit being '1', PWM output becomes a reset value, and internal counter becomes reset as 0. Without changing PWM setting, temporarily it is able to stop PWM. In case of T4CNT, when stopping counter, PWM output pin remains before states. But if PHLT bit sets to '1', PWM output pin has reset value.

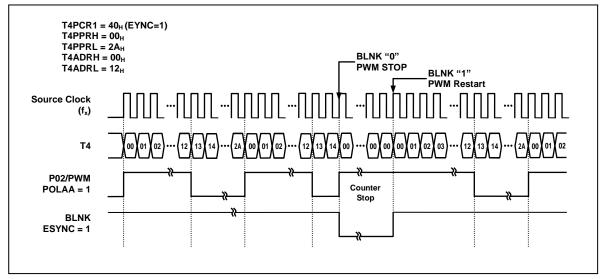



Figure 11.41 Example of PWM External Synchronization with BLNK Input



### FORCE Drive ALL Channel with A-ch mode

If FORCA bit sets to '1', it is possible to enable or disable all PWM output pins through PWM outputs which occur from A-ch duty counter. It is noted that the inversion outputs of A, B, C channel have the same A-ch output waveform. According to POLAA/BB/CC, it is able to control the inversion of outputs.

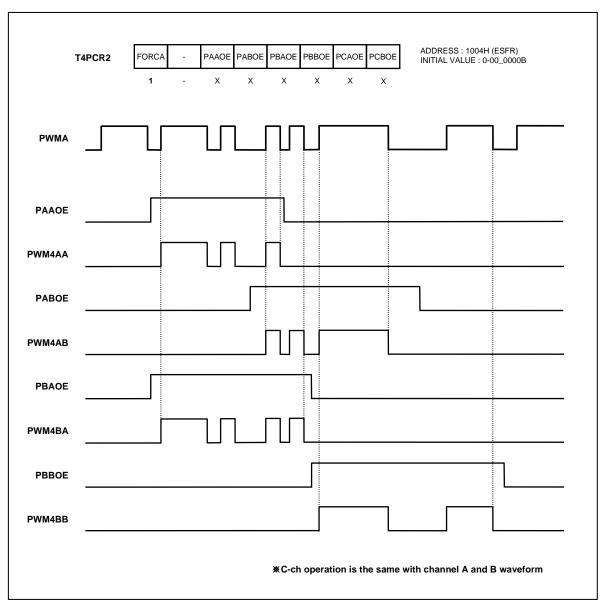



Figure 11.42 Example of Force Drive All Channel with A-ch



### FORCE 6-Ch Drive

If FORCA bit sets to '0', it is possible to enable or disable PWM output pin and inversion output pin generated through the duty counter of each channel. The inversion output is the reverse phase of the PWM output. A AA/AB output of the A-channel duty register, a BA/BB output of the B-channel duty register, a CA/CB output of the C-channel duty register are controlled respectively. If the UALL bit is set to '1', it is updated B/C channel duty at the same time, when it is written by a A-channel duty register.

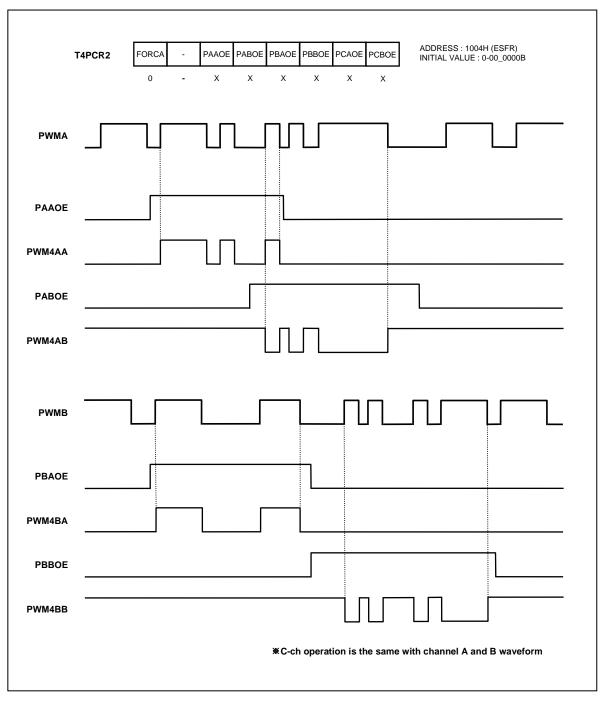



Figure 11.43 Example of Force Drive 6-ch Mode



### **PWM output Delay**

If using the T4DLYA, T4DLYB, T4DLYC register, it can delay PWM output based on the rising edge. At that time, it does not change the falling edge, so the duty is reduced as the time delay. In POLAA/BA/CA setting to '0', the delay is applied to the falling edge. In POLAA/BA/CA setting to '1', the delay is applied to the rising edge. It can produce a pair of Non-overlapping clock. The each channel is able to have 4-bit delay. As it can select the clock up to 1/8 divided clock using NOPS[1:0] the delay of its maximum 128 timer clock cycle is produced.



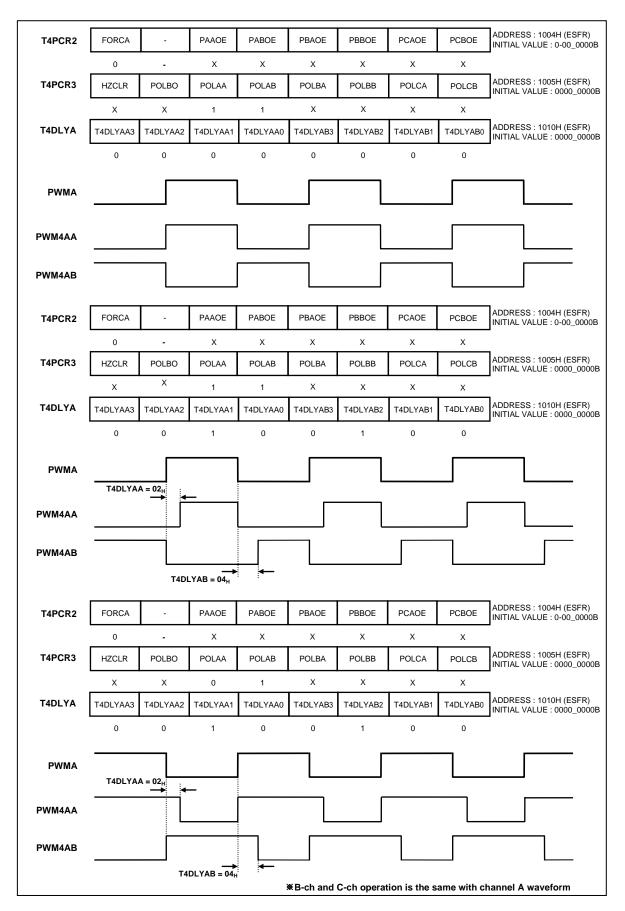



Figure 11.44 Example of PWM Delay



## 11.8.7 Block Diagram

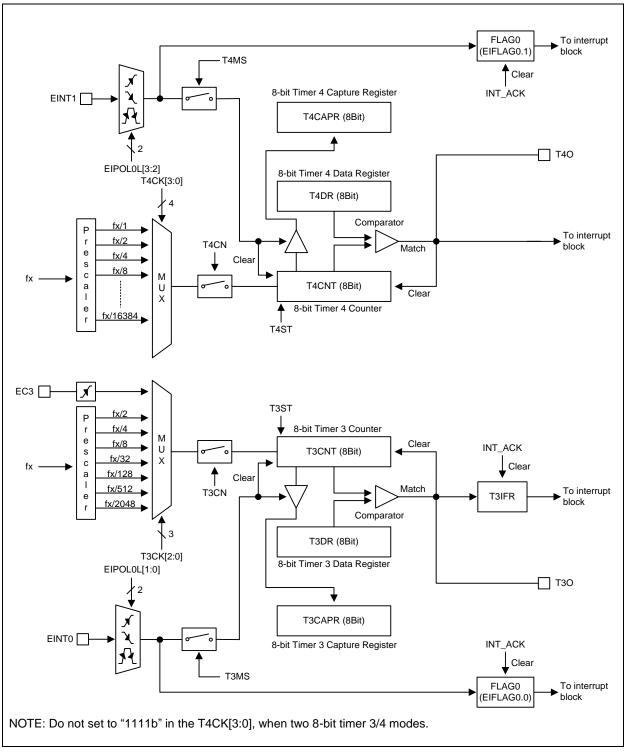



Figure 11.45 Two 8-Bit Timer 3, 4 Block Diagram



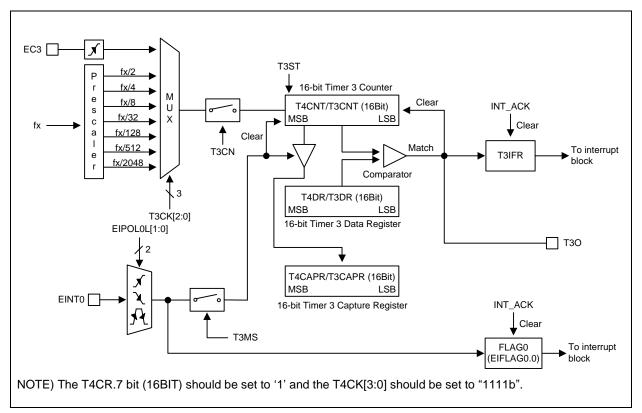



Figure 11.46 16-Bit Timer 3 Block Diagram

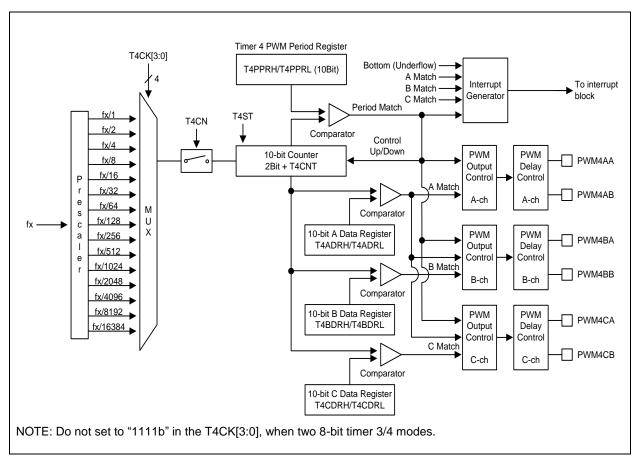



Figure 11.47 10-Bit PWM Timer 4 Block Diagram



# 11.8.8 Register Map

Name	Address	Dir	Default	Description
T3CNT	1001H (ESFR)	R	00H	Timer 3 Counter Register
T3DR	1001H (ESFR)	W	FFH	Timer 3 Data Register
T3CAPR	1001H (ESFR)	R	00H	Timer 3 Capture Data Register
T3CR	1000H (ESFR)	R/W	00H	Timer 3 Control Register
T4PPRH	1009H (ESFR)	R/W	00H	Timer 4 PWM Period High Register
T4PPRL	1008H (ESFR)	R/W	FFH	Timer 4 PWM Period Low Register
T4ADRH	100BH (ESFR)	R/W	00H	Timer 4 PWM A Duty High Register
T4ADRL	100AH (ESFR)	R/W	7FH	Timer 4 PWM A Duty Low Register
T4BDRH	100DH (ESFR)	R/W	00H	Timer 4 PWM B Duty High Register
T4BDRL	100CH (ESFR)	R/W	7FH	Timer 4 PWM B Duty Low Register
T4CDRH	100FH (ESFR)	R/W	00H	Timer 4 PWM C Duty High Register
T4CDRL	100EH (ESFR)	R/W	7FH	Timer 4 PWM C Duty Low Register
T4DLYA	1010H (ESFR)	R/W	00H	Timer 4 PWM A Delay Register
T4DLYB	1011H (ESFR)	R/W	00H	Timer 4 PWM B Delay Register
T4DLYC	1012H (ESFR)	R/W	00H	Timer 4 PWM C Delay Register
T4DR	1013H (ESFR)	R/W	FFH	Timer 4 Data Register
T4CAPR	1014H (ESFR)	R	00H	Timer 4 Capture Data Register
T4CNT	1015H (ESFR)	R	00H	Timer 4 Counter Register
T4CR	1002H (ESFR)	R/W	00H	Timer 4 Control Register
T4PCR1	1003H (ESFR)	R/W	00H	Timer 4 PWM Control Register 1
T4PCR2	1004H (ESFR)	R/W	00H	Timer 4 PWM Control Register 2
T4PCR3	1005H (ESFR)	R/W	00H	Timer 4 PWM Control Register 3
T4ISR	1006H (ESFR)	R/W	00H	Timer 4 Interrupt Status Register
T4MSK	1007H (ESFR)	R/W	00H	Timer 4 Interrupt Mask Register

# Table 11-14 Timer 3, 4 Register Map



# 11.8.8.1 Timer/Counter 3 Register Description

The timer/counter 3 register consists of timer 3 counter register (T3CNT), timer 3 data register (T3DR), timer 3 capture data register (T3CAPR) and timer 3 control register (T3CR).

# 11.8.8.2 Register Description for Timer/Counter 3

T3CNT (Timer 3 Counter Register: Read Case, Timer mode only) : 1001H (ESFR)											
7	6	5	4	3	2	1	0				
T3CNT7	T3CNT6	T3CNT5	T3CNT4	T3CNT3	T3CNT2	T3CNT1	T3CNT0				
R	R	R	R	R	R	R	R				
Initial value : 00H T3CNT[7:0] T3 Counter											
T3DR (Timer 3 Data Register: Write Case) : 1001H (ESFR)											
7	6	5	4	3	2	1	0				
T3DR7	T3DR6	T3DR5	T3DR4	T3DR3	T3DR2	T3DR1	T3DR0				
W	W	W	W	W	W	W	W				
T3DR[7:0]     T3 Data											
T3CAPR (Tin	ner 3 Capture	Data Registe	er: Read Case	e, Capture mo	de only) : 10	01H (ESFR)					
T3CAPR (Tin 7	ner 3 Capture 6	Data Registe	er: Read Case 4	e, Capture mo 3	ode only) : 10 2	01H (ESFR) 1	0				
•	-	•		•	•••	01H (ESFR) 1 T3CAPR 1	0 T3CAPR 0				

Initial value : 00H

T3CAPR[7:0] T3 Capture Data



7	6	5	4	4	3	2	1	0
T3EN	_	T3MS	Т30	CK2	T3CK1	T3CK0	T3CN	T3ST
RW	-	RW	R	W	RW	RW	RW	RW
								Initial value : 00
	T3E	EN	Control	Timer 3				
			0	Timer 3	disable			
			1	Timer 3	enable			
	Т3	NS	Control	Timer 3 C	Operation	Mode		
			0	Timer/c	ounter mo	ode (T3O: toggle	e at match)	
			1	Capture	e mode (th	e match interru	pt can occur)	
	Т30	CK[2:0]	Select T	imer 3 clo	ock source	e. fx is main sys	tem clock free	quency
			T3CK2	T3CK1	T3CK0	Description		
			0	0	0	fx/2		
			0	0	1	fx/4		
			0	1	0	fx/8		
			0	1	1	fx/32		
			1	0	0	fx/128		
			1	0	1	fx/512		
			1	1	0	fx/2048		
			1	1	1	External Clock	(EC3)	
	Т30	CN				se/Continue		
			0	-	rary count	stop		
			1		ie count			
	Т39	ST		Timer 3 S				
			0	Counte	-			
			1	Clear c	ounter and	d start		

# T3CR (Timer 3 Control Register) : 1000H (ESFR)

NOTE) Refer to the external interrupt flag 1 register (EIFLAG1) tor the T3 interrupt flag.

# 11.8.8.3 Timer/Counter 4 Register Description

The timer/counter 4 register consists of timer 4 PWM period high/low register (T4PPRH/L), timer 4 PWM A duty high/low register (T4ADRH/L), timer 4 PWM B duty high/low register (T4BDRH/L), ), timer 4 PWM C duty high/low register (T4CDRH/L), timer 4 PWM A delay register (T4DLYA), timer 4 PWM B delay register (T4DLYB), timer 4 PWM C delay register (T4DLYC), timer 4 data register (T4DR), timer 4 capture data register (T4CAPR), timer 4 counter register (T4CNT), timer 4 control register (T4CR), timer 4 PWM control register 1 (T4PCR1), timer 4 PWM control register 2 (T4PCR2), timer 4 PWM control register 3 (T4PCR3), timer 4 interrupt status register (T4ISR) and timer 4 interrupt mask register (T4MSK).

# 11.8.8.4 Register Description for Timer/Counter 4

T4PPRH (Tim	ner 4 PWM Pe	riod High Re	gister : 6-ch l	PWM mode o	nly) : 1009H (	ESFR)		
7	6	5	4	3	2	1	0	
-	-	-	-	-	-	T4PPRH1	T4PPRH0	
-	-	-	-	-	-	RW	RW	
						I	nitial value : 0	ЮH

T4PPRL[1:0] T4 PWM Period Data High Byte

#### T4PPRL (Timer 4 PWM Period Low Register : 6-ch PWM mode only) : 1008H (ESFR)

7	6	5	4	3	2	1	0
T4PPRL7	T4PPRL6	T4PPRL5	T4PPRL4	T4PPRL3	T4PPRL2	T4PPRL1	T4PPRL0
RW							
							nitial value : FFH

T4PPRL[7:0] T4 PWM Period Data Low Byte

#### T4ADRH (Timer 4 PWM A Duty High Register : 6-ch PWM mode only) : 100BH (ESFR)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	T4ADRH1	T4ADRH0
-	-	-	-	_	-	RW	RW
						I	nitial value : 00H

T4ADRL[1:0] T4 PWM A Duty Data High Byte

#### T4ADRL (Timer 4 PWM A Duty Low Register : 6-ch PWM mode only) : 100AH (ESFR)

7	6	5	4	3	2	1	0	
T4ADRL7	T4ADRL6	T4ADRL5	T4ADRL4	T4ADRL3	T4ADRL2	T4ADRL1	T4ADRL0	
RW								
						I	nitial value : 7	ΈH

T4ADRL[7:0] T4 PWM A Duty Data Low Byte



T	T4BDRH (Timer 4 PWM B Duty High Register : 6-ch PWM mode only) : 100DH (ESFR)											
	7	6	5	4	3	2	1	0				
	_	-	_	-	-	-	T4BDRH1	T4BDRH0				
	-	-	-	-	-	-	RW	RW				
							I	nitial value : 00	ЭΗ			

**T4BDRL[1:0]** T4 PWM B Duty Data High Byte

### T4BDRL (Timer 4 PWM B Duty Low Register : 6-ch PWM mode only) : 100CH (ESFR)

7	6	5	4	3	2	1	0
T4BDRL7	T4BDRL6	T4BDRL5	T4BDRL4	T4BDRL3	T4BDRL2	T4BDRL1	T4BDRL0
RW							

Initial value : 7FH

T4BDRL[7:0] T4 PWM B Duty Data Low Byte

### T4CDRH (Timer 4 PWM C Duty High Register : 6-ch PWM mode only) : 100FH (ESFR)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	T4CDRH1	T4CDRH0
-	-	-	-	-	-	RW	RW
							nitial value : 00H

T4CDRL[1:0] T4 PWM C Duty Data High Byte

### T4CDRL (Timer 4 PWM C Duty Low Register : 6-ch PWM mode only) : 100EH (ESFR)

	7	6	5	4	3	2	1	0
T4	CDRL7	T4CDRL6	T4CDRL5	T4CDRL4	T4CDRL3	T4CDRL2	T4CDRL1	T4CDRL0
	RW	RW	RW	RW	RW	RW	RW	RW

Initial value : 7FH

T4CDRL[7:0] T4 PWM C Duty Data Low Byte

#### T4DLYA (Timer 4 PWM A Delay Register : 6-ch PWM mode only) : 1010H (ESFR)

7	6	5	4	3	2	1	0
T4DLYAA3	T4DLYAA2	T4DLYAA1	T4DLYAA0	T4DLYAB3	T4DLYAB2	T4DLYAB1	T4DLYAB0
RW							

Initial value : 00H

T4DLYAA[3:0]PWM4AA Delay Data (Rising edge only)T4DLYAB[3:0]PWM4AB Delay Data (Rising edge only)

### T4DLYB (Timer 4 PWM B Delay Register : 6-ch PWM mode only) : 1011H (ESFR)

7	6	5	4	3	2	1	0	
T4DLYBA3	T4DLYBA2	T4DLYBA1	T4DLYBA0	T4DLYBB3	T4DLYBB2	T4DLYBB1	T4DLYBB0	
RW								
						I	nitial value : 0	0H

T4DLYBA[3:0]PWM4BA Delay Data (Rising edge only)T4DLYBB[3:0]PWM4BB Delay Data (Rising edge only)

		Delay Regist		i mode omyj	. 101211 (EOI	NJ	
7	6	5	4	3	2	1	0
T4DLYCA3	T4DLYCA2	T4DLYCA1	T4DLYCA0	T4DLYCB3	T4DLYCB2	T4DLYCB1	T4DLYCB0
R/W	RW	RW	RW	RW	RW	RW	RW
							Initial value : 00

## T4DLYC (Timer 4 PWM C Delay Register : 6-ch PWM mode only) : 1012H (ESFR)

T4DLYCA[3:0]PWM4CA Delay Data (Rising edge only)T4DLYCB[3:0]PWM4CB Delay Data (Rising edge only)

7	6	5	4	3	2	1	0
T4DR7	T4DR6	T4DR5	T4DR4	T4DR3	T4DR2	T4DR1	T4DR0
RW							
						I	nitial value : FFH

T4DR[7:0] T4 Data

### T4CAPR (Timer 4 Capture Data Register: Read Case, Capture mode only) : 1014H (ESFR)

7	6	5	4	3	2	1	0	
T4CAPR7	T4CAPR6	T4CAPR5	T4CAPR4	T4CAPR3	T4CAPR2	T4CAPR1	T4CAPR0	
R	R	R	R	R	R	R	R	

Initial value : 00H

T4CAPR[7:0] T4 Capture Data

#### T4CNT (Timer 4 Counter Register: Read Case, Timer mode only) : 1015H (ESFR)

7	6	5	4	3	2	1	0
T4CNT7	T4CNT6	T4CNT5	T4CNT4	T4CNT3	T4CNT2	T4CNT1	T4CNT0
R	R	R	R	R	R	R	R
							nitial value : 00

T4CNT[7:0] T4 Counter



7	6	5	4	1	3		2	1	0
16BIT	T4MS	T4CN	T4	ST	T4CK3	T4	CK2	T4CK1	T4CK0
RW	RW	RW	R/	W	RW	F	Ŵ	RW	RW
									Initial value : 00H
	16E	ΒΙΤ	Select T	wo 8-bit o	or 16-bit N	Node for	Timer 3	/4	
			0	Two 8-b	it Timer 3	3/4			
			1	16-bit T	imer 3				
	T41	NS	Control	Timer 4 C	peration	Mode			
			0	Timer/c	ounter m	ode (T4C	): toggle	e at match)	
			1	Capture	e mode (tl	he match	interru	pt can occur)	
	T40	CN	Control ⁻	Timer 4 C	ount Pau	ise/Conti	nue		
			0		ary coun	t stop			
			1	Continu					
	T48	ST		Timer 4 S	-				
			0	Counte					
			1		ounter an				
	T40	CK[3:0]						tem clock fre	quency
			T4CK3		T4CK1			iption	
			0	0	0	0	fx/1		
			0	0	0	1	fx/2		
			0	0	1	0	fx/3		
			0	0	1	1	fx/8		
			0	1	0	0	fx/16		
			0	1	0	1	fx/32		
			0 0	1 1	1 1	0	fx/64 fx/128		
			1	0	0	1 0	fx/256		
			1	0	0	1	fx/512		
			1	0	1	0	fx/102		
			1	0	1	1	fx/204		
			1	1	0	0	fx/406		
			1	1	0	1	fx/819		
			1	1	1	0	fx/163		
			1	1	1	1			16-Bit Timer 3)
			•		•	•			

# T4CR (Timer 4 Control Register) : 1002H (ESFR)



7	6	5	4	Ļ	3	2	1	0			
PWM4E	ESYNC	BMOD	PH	LT	UPDT	UALL	NOPS1	NOPS0			
RW	RW	RW	R/	W	RW	RW	RW	RW			
								Initial value : 0			
	PW	M4E	Control Timer 4 Mode								
			0 Select timer/counter or capture mode of Timer 4								
			1 Select 10-bit PWM mode of Timer 4								
	ES	YNC	Select the Operation of External Sync with the BLNK pin								
			0 Disable external sync operation								
			1 Enable external sync operation								
			(The all PWM4xA/PWM4xB pins are high-impedance outpu on rising edge of the BLNK input pin. Where x= A, B and C)								
	BM	OD	Control Back-to-Back Mode Operation								
			0 Disable back-to-back mode (up count only)								
			1	Enable	e back-to-bac	k mode (up/d	own count on	ly)			
	PHLT			Timer 4	PWM Operat	ion					
			0	Run 1	0-bit PWM						
			1	Stop 1	0-bit PWM (d	counter hold a	nd output disa	able)			
	UP	DT	Select the Update Timer of T4PPR/T4ADR/T4BDR/T4CDR								
			0 Update at period match of T4CNT and T4PPR								
			1	Updat	e at any time	when written					
	UA	LL	Control I	Jpdate	All Duty Regi	sters (T4ADR	/T4BDR/T4C	DR)			
			0		a duty registe						
			1	Wrtie a (T4AD		ers via Timer	4 PWM A dur	y register			
	NO	PS[1:0]	Select of	n-Overla	ap Prescaler						
			NOPS1	NOPS	0 Descript	ion					
			0	0	f _{PWM} /1						
			0	1	f _{PWM} /2						
			1	0	f _{PWM} /4						
			1	1	f _{PWM} /8						
			NOTE) V	Vhere th	ne f _{PWM} is the	clock frequer	ncy of the Tim	er 4 PWM.			

# T4PCR1 (Timer 4 PWM Control Register 1) : 1003H (ESFR)



7	6	5	4	3	2	1	0
FORCA	_	PAAOE	PABOE	PBAOE	PBBOE	PCAOE	PCBOE
RW	_	RW	RW	RW	RW	RW	RW
							nitial value : 00H
	FO	RCA (	Control The PV	VM outputs Mo	ode		
		(	0 6-cha	nnel mode			
			•	PWM4xA/PW	•	•	•
				R registers, re		here $x = A, B$	and C)
				A-channel m		ore output co	oording to the
			•	all PWM4xA/F F4ADR registe	•	•	cording to the
	PA	AOE	Select Channel	•		, , D and O)	
				le PWM4AA d			
				le PWM4AA o	•		
	PAI	BOE	Select Channel	PWM4AB Op	eration		
		(	0 Disat	le PWM4AB o	output		
			1 Enab	le PWM4AB o	utput		
	PB	AOE	Select Channe	PWM4BA Op	eration		
		(	0 Disat	ole PWM4BA o	output		
			1 Enab	le PWM4BA o	utput		
	PB	BOE	Select Channe	PWM4BB Op	eration		
		(	0 Disat	ole PWM4BB o	output		
				le PWM4BB o	-		
	PC		Select Channe	•			
				ole PWM4CA o	•		
	50			le PWM4CA d	•		
	PC		Select Channel	-			
				ble PWM4CB (	•		
			1 Enab	le PWM4CB o	utput		

# T4PCR2 (Timer 4 PWM Control Register 2) : 1004H (ESFR)



7	6	5	4	3	2	1	0				
HZCLR	POLBO	POLAA	POLAB	POLBA	POLBB	POLCA	POLCB				
RW	RW	RW	RW	RW	RW	RW	RW				
						I	nitial value : 0				
	HZ	CLR	High-Impedance Output Clear Bit								
			0 No	effect							
			1 Clea	ar high-impedar	nce output						
			(The PWM4xA/PWM4xB pins are back to output and this bit is automatically cleared to logic '0'. where $x = A$ , B and C)								
	PO	LBO	Configure PWM4AB/PWM4BB/PWMCB Channel Polarity When these pins are disabled								
			<ul> <li>These pins are output according to the polarity setting when disable (POLAB/POLBB/POLCB bits)</li> </ul>								
			1 These pins are same level as the PWM4xA pins regardless of the polarity setting when disable (POLAB/POLBB/POLCB bits where x = A, B and C)								
	PO	LAA	Configure PW	M4AA Channe	l Polarity						
			0 Sta	t at high level (	This pin is low	/ level when di	isable)				
			1 Sta	t at low level (T	his pin is high	n level when di	isable)				
	PO	LAB	Configure PWM4AB Channel Polarity								
			0 Non-inversion signal of PWM4AA pin								
			1 Inve	ersion signal of	PWM4AA pin						
	PO	LBA	Configure PW	M4AA Channe	l Polarity						
			0 Star	t at high level (	This pin is low	/ level when di	isable)				
			1 Star	t at low level (T	his pin is high	n level when di	isable)				
	PO	LBB	Configure PW	M4AB Channe	l Polarity						
			0 Nor	-inversion signa	al of PWM4BA	A pin					
			1 Inve	ersion signal of	PWM4BA pin						
	PO	LCA	Configure PW	M4CA Channe	l Polarity						
			0 Star	t at high level (	This pin is low	ı level when di	isable)				
			1 Star	t at low level (T	his pin is high	n level when di	isable)				
	PO	LCB	Configure PWM4CB Channel Polarity								
			0 Nor	-inversion signa	al of PWM4C	A pin					
			1 Inve	ersion signal of	PWM4CA pin						

# T4PCR3 (Timer 4 PWM Control Register 3) : 1005H (ESFR)



7	6	5	4	3	2	1	0
<b>IOVR</b>	IBTM	ICMA	ICMB	ICMC	-	_	_
RW	RW	RW	RW	RW	-	-	-
						I	nitial value : 00
	IOV	R -	Timer 4 Overflo	w Interrupt St	atus, Write '1'	to this bit for	clear
		(	) Overflo	ow occurrence			
			Overflo	ow no occurre	nce		
	IBT		Fimer 4 Bottom In the Back-to-	-	us, Write '1' to	o this bit for cl	ear
				occurrence			
			Bottom	no occurrenc	e		
	ICM		Fimer 4 Compa his bit for clear		WM A-ch Ma	tch Interrupt S	Staus, Write '1'
		(	) Compa	are match or F	WM A-ch ma	tch occurrence	e
			Compa	are match or P	WM A-ch ma	tch no occurre	nce
	ICM	IB -	Fimer 4 PWM E	B-ch Match Int	errupt Status,	Write '1' to th	is bit for clear
		(	) PWm I	B-ch match oc	currence		
			PWm I	B-ch match no	occurrence		
	ICM		Timer 4 PWM (	C-ch Match Int	errupt Status,	Write '1' to th	is bit for clear
		(	) PWm (	C-ch match oc	currence		
			PWm (	C-ch match no	occurrence		

# T4ISR (Timer 4 Interrupt Status Register) : 1006H (ESFR)

# T4MSK (Timer 4 Interrupt Mask Register) : 1007H (ESFR)

7	6	5	4	3	2	1	0
OVRMSK	BTMMSK	CMAMSK	CMBMSK	CMCMSK	-	-	-
RW	RW	RW	RW	RW	-	-	-
						I	nitial value : 00
	OV	RMSK	Control Timer 4	Overflow Inte	errupt		
			0 Disble	overflow inter	rupt		
			1 Enable	overflow inte	rrupt		
	BT	MMSK	Control Timer 4	Bottom Interr	rupt		
			0 Disble	bottom interru	ıpt		
			1 Enable	bottom interr	upt		
	CM	AMSK	Control Timer 4	Compare Ma	tch or PWM A	-ch Match Int	errupt
			0 Disble	compare mate	ch or PWM A-	ch match inter	rupt
			1 Enable	compare mat	tch or PWM A	-ch match inte	errupt
	CM	BMSK	Control Timer 4	PWM B-ch N	latch Interrupt		
			0 Disble	PWM B-ch ma	atch interrupt		
			1 Enable	PWM B-ch m	atch interrupt		
	CM	CMSK	Control Timer 4	PWM C-ch M	latch Interrupt	t	
			0 Disble	PWM C-ch ma	atch interrupt		
			1 Enable	PWM C-ch m	natch interrupt		

# 11.9 Buzzer Driver

# 11.9.1 Overview

The Buzzer consists of 8 bit counter, buzzer data register (BUZDR), and buzzer control register (BUZCR). The Square Wave (61.035Hz~125.0 kHz @8MHz) is outputted through P13/SEG17/AN10/EC1/BUZO pin. The buzzer data register (BUZDR) controls the bsuzzer frequency (look at the following expression). In buzzer control register (BUZCR), BUCK[1:0] selects source clock divided by prescaler.

$$f_{BUZ}(Hz) = \frac{\text{Oscillator Frequency}}{2 \times \text{Prescaler Ratio} \times (BUZDR + 1)}$$

### Table 11-15 Buzzer Frequency at 8 MHz

	Buzzer Frequency (kHz)									
BUZDR[7:0]	BUZCR[2:1]=00	BUZCR[2:1]=01	BUZCR[2:1]=10	BUZCR[2:1]=11						
0000_0000	125kHz	62.5kHz	31.25kHz	15.625kHz						
0000_0001	62.5kHz	31.25kHz	15.625kHz	7.812kHz						
1111_1101	492.126Hz	246.063Hz	123.031Hz	61.515Hz						
1111_1110	490.196Hz	245.098Hz	122.549Hz	61.274Hz						
1111_1111	488.281Hz	244.141Hz	122.07Hz	61.035Hz						

# 11.9.2 Block Diagram

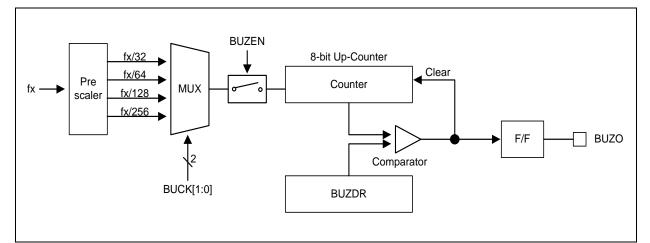



Figure 11.48 Buzzer Driver Block Diagram

### 11.9.3 Register Map

### Table 11-16 Buzzer Driver Register Map

Name	Address	Dir	Default	Description
BUZDR	8FH	R/W	FFH	Buzzer Data Register
BUZCR	97H	R/W	00H	Buzzer Control Register

### 11.9.4 Buzzer Driver Register Description

Buzzer driver consists of buzzer data register (BUZDR) and buzzer control register (BUZCR).

### 11.9.5 Register Description for Buzzer Driver

### BUZDR (Buzzer Data Register) : 8FH

7	6	5	4	3	2	1	0
BUZDR7	BUZDR6	BUZDR5	BUZDR4	BUZDR3	BUZDR2	BUZDR1	BUZDR0
RW							
							nitial value : FFH

BUZDR[7:0]

This bits control the Buzzer frequency Its resolution is 00H ~ FFH

### BUZCR (Buzzer Control Register) : 97H

7	6	5	4	3	2	1	0
-	-	-	-	-	BUCK1	BUCK0	BUZEN
-	-	-	-	-	RW	RW	RW
						I	nitial value : 00H
	BU	CK[1:0]	Buzzer Drive	r Source Clock	Selection		
			BUCK1 BL	JCK0 Descri	ption		
			0 0	fx/32			
			0 1	fx/64			
			1 0	fx/128			
			1 1	fx/256			
	BU	ZEN	Buzzer Drive	r Operation Co	ntrol		
			0 Bu	zzer Driver dis	able		
			1 Bu	zzer Driver ena	able		

NOTE) fx: System clock oscillation frequency.

# 11.10 SPI 2

## 11.10.1 Overview

There is serial peripheral interface (SPI 2) one channel in MC96F6432. The SPI 2 allows synchronous serial data transfer between the external serial devices. It can do Full-duplex communication by 4-wire (MOSI2, MISO2, SCK2, SS2), support master/slave mode, can select serial clock (SCK2) polarity, phase and whether LSB first data transfer or MSB first data transfer.

## 11.10.2 Block Diagram

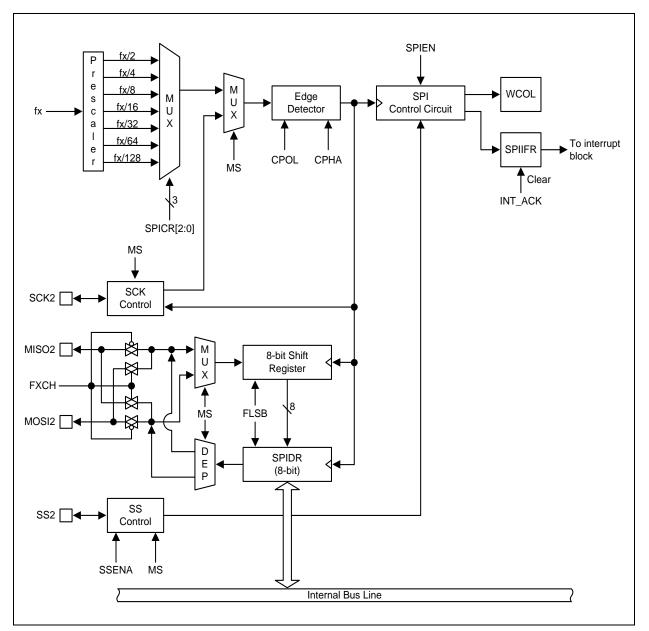



Figure 11.49 SPI 2 Block Diagram



# 11.10.3 Data Transmit / Receive Operation

User can use SPI 2 for serial data communication by following step

- 1. Select SPI 2 operation mode(master/slave, polarity, phase) by control register SPICR.
- 2. When the SPI 2 is configured as a Master, it selects a Slave by SS2 signal (active low).
  - When the SPI 2 is configured as a Slave, it is selected by SS2 signal incoming from Master
- 3. When the user writes a byte to the data register SPIDR, SPI 2 will start an operation.
- 4. In this time, if the SPI 2 is configured as a Master, serial clock will come out of SCK2 pin. And Master shifts the eight bits into the Slave (transmit), Slave shifts the eight bits into the Master at the same time (receive). If the SPI 2 is configured as a Slave, serial clock will come into SCK2 pin. And Slave shifts the eight bits into the Master (transmit), Master shifts the eight bits into the Slave at the same time (receive).
- 5. When transmit/receive is done, SPIIFR bit will be set. If the SPI 2 interrupt is enabled, an interrupt is requested. And SPIIFR bit is cleared by hardware when executing the corresponding interrupt. If SPI 2 interrupt is disable, SPIIFR bit is cleared when user read the status register SPISR, and then access (read/write) the data register SPIDR.

# 11.10.4 SS2 pin function

- 1. When the SPI 2 is configured as a Slave, the SS2 pin is always input. If LOW signal come into SS2 pin, the SPI 2 logic is active. And if 'HIGH' signal come into SS2 pin, the SPI 2 logic is stop. In this time, SPI 2 logic will be reset, and invalidated any received data.
- 2. When the SPI 2 is configured as a Master, the user can select the direction of the SS2 pin by port direction register (P17IO). If the SS2 pin is configured as an output, user can use general P17IO output mode. If the SS2 pin is configured as an input, 'HIGH' signal must come into SS2 pin to guarantee Master operation. If 'LOW' signal come into SS2 pin, the SPI 2 logic interprets this as another master selecting the SPI 2 as a slave and starting to send data to it. To avoid bus contention, MSB bit of SPICR will be cleared and the SPI 2 becomes a Slave and then, SPIIFR bit of SPISR will be set, and if the SPI 2 interrupt is enabled, an interrupt is requested.

### NOTES)

- When the SS2 pin is configured as an output at Master mode, SS2 pin's output value is defined by user's software (P17IO). Before SPICR setting, the direction of SS2 pin must be defined
- If you don't need to use SS2 pin, clear the SSENA bit of SPISR. So, you can use disabled pin by P17IO freely. In this case, SS2 signal is driven by 'HIGH' or 'LOW' internally. In other words, master is 'HIGH', salve is 'LOW'
- When SS2 pin is configured as input, if 'HIGH' signal come into SS2 pin, SS_HIGH flag bit will be set. And you can clear it by writing '0'.



# 11.10.5 SPI 2 Timing Diagram

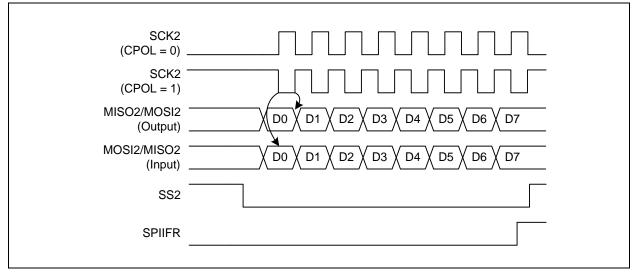



Figure 11.50 SPI 2 Transmit/Receive Timing Diagram at CPHA = 0

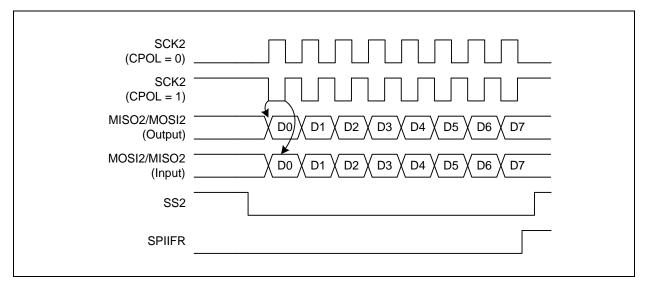



Figure 11.51 SPI 2 Transmit/Receive Timing Diagram at CPHA = 1



### 11.10.6 Register Map

### Table 11-17 SPI 2 Register Map

Name	Address	Dir	Default	Description
SPISR	B7H	R/W	00H	SPI 2 Status Register
SPIDR	B6H	R/W	00H	SPI 2 Data Register
SPICR	B5H	R/W	00H	SPI 2 Control Register

## 11.10.7 SPI 2 Register Description

The SPI 2 register consists of SPI 2 control register (SPICR), SPI 2 status register (SPISR) and SPI 2 data register (SPIDR)

## 11.10.8 Register Description for SPI 2

### SPIDR (SPI 2 Data Register) : B6H

7	6	5	4	3	2	1	0
SPIDR7	SPIDR6	SPIDR5	SPIDR4	SPIDR3	SPIDR2	SPIDR1	SPIDR0
RW							

Initial value : 00H

SPIDR [7:0]

SPI 2 Data

When it is written a byte to this data register, the SPI 2 will start an operation.



### SPISR (SPI 2 Status Register) : B7H

7	6	5	4	3	2	1	0
SPIIFR	WCOL	SS_HIGH	-	FXCH	SSENA	_	-
RW	R	RW	_	RW	RW	_	_
						I	nitial value : 00
	SPI	IFR		is auto cleared bit is cleared ad/write) the o nterrupt no ge	d by INT_ACH when the state data register S eneration	<ul> <li>signal. And</li> <li>register SP</li> </ul>	if SPI 2 Interru
			1 SPI 2 I	nterrupt gene	ration		
	WC	OL	This bit is set i transfer. This b then access (re	it is cleared w	hen the statu	s register SP	
			0 No coll	ision			
			1 Collisio	on			
	SS_	HIGH	When the SS2 pin, this flag bit		red as input, i	f "HIGH" signa	al comes into t
			0 Cleare	d when '0' is v	vritten		
			1 No effe	ect when '1' is	written		
	FXC	СН	SPI 2 port func	tion exchange	control bit.		
			0 No effe	ect			
			1 Exchar	nge MOSI2 an	d MISO2 fund	tion	
	SSE	ENA	This bit controls	s the SS2 pin	operation		
			0 Disable	Э			
			1 Enable	(The P17 sho	uld be a norn	nal innut)	



7	6	5		4	3		2	1	0			
SPIEN	FLSB	MS	C	POL	CPHA	<b>۱</b>	DSCR	SCR1	SCR0			
RW	RW	RW		RW	RW		RW	RW	RW			
									Initial value : (			
	SP	SPIEN		This bit controls the SPI 2 operation								
			0 Disable SPI 2 operation									
			1	Enable	SPI 2 op	eration						
	FLS	SB	This bit selects the data transmission sequence									
			0	MSB fir	st							
			1	LSB fire	st							
	MS		This bi	t selects	whether I	Master o	or Slave m	ode				
			0	Slave n	node							
			1	Master	mode							
	CP	-	This two bits control the serial clock (SCK2) mode.									
	CP	HA	Clock polarity(CPOL) bit determine SCK2's value at idle mode. Clcok phase (CPHA) bit determine if data are sampled on the leading									
				edge of		determi	ne if data	are sampled	on the leading			
			-	-	Leading	g edge		Trailing e	dge			
			0	0	Sample	(Rising	)	Setup (Fa	alling)			
			0	1	Setup (I	Rising)		Sample (	Falling)			
			1	0	Sample	(Falling	1)	Setup (R	ising)			
			1	1	Setup (I	Falling)		Sample (	Rising)			
	DS SC	CR R[2:0]	These master mode.	three bi . When	its select DSCR bit	the SC is writt	CK2 rate c en one, So	f the device CK2 will be d	configured a oubled in ma			
			DSCR	SCR1	SCR0	SCK2	frequency					
			0	0	0	fx/4						
			0	0	1	fx/16						
			0	1	0	fx/64						
			0	1	1	fx/128						
			1	0	0	fx/2						
			1	0	1	fx/8						
			1	1	0	fx/32						

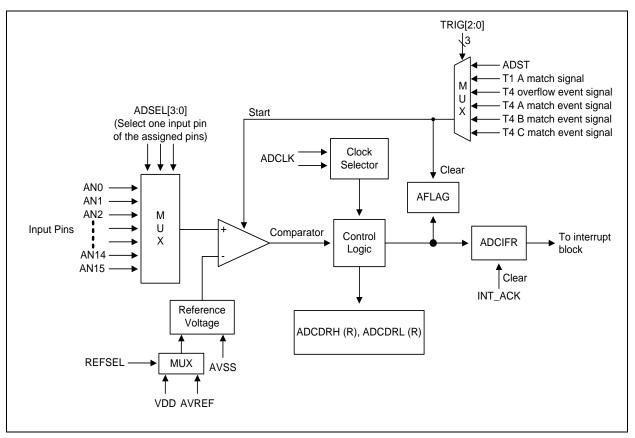
# 11.11 12-Bit A/D Converter

## 11.11.1 Overview

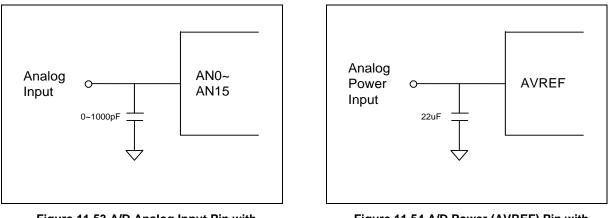
The analog-to-digital converter (A/D) allows conversion of an analog input signal to corresponding 12-bit digital value. The A/D module has eight analog inputs. The output of the multiplexer is the input into the converter which generates the result through successive approximation. The A/D module has four registers which are the A/D converter control high register (ADCCRH), A/D converter control low register (ADCCRL), A/D converter data high register (ADCDRH), and A/D converter data low register (ADCDRL). The channels to be converted are selected by setting ADSEL[3:0]. To execute A/D conversion, TRIG[2:0] bits should be set to 'xxx'. The register ADCDRH and ADCDRL contains the results of the A/D conversion status bit AFLAG is set to '1', and the A/D interrupt is set. During A/D conversion, AFLAG bit is read as '0'.

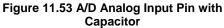
# 11.11.2 Conversion Timing

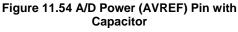
The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to set up A/D conversion. Therefore, total of 58 clocks are required to complete a 12-bit conversion: When fxx/8 is selected for conversion clock with a 12MHz fxx clock frequency, one clock cycle is 0.66 µs. Each bit conversion requires 4 clocks, the conversion rate is calculated as follows:


4 clocks/bit × 12 bits + set-up time = 58 clocks,

58 clock × 0.66  $\mu$ s = 38.28  $\mu$ s at 1.5 MHz (12 MHz/8)


NOTE) The A/D converter needs at least 20 µs for conversion time. So you must set the conversion time more than 20 µs.





# 11.11.3 Block Diagram













# 11.11.4 ADC Operation

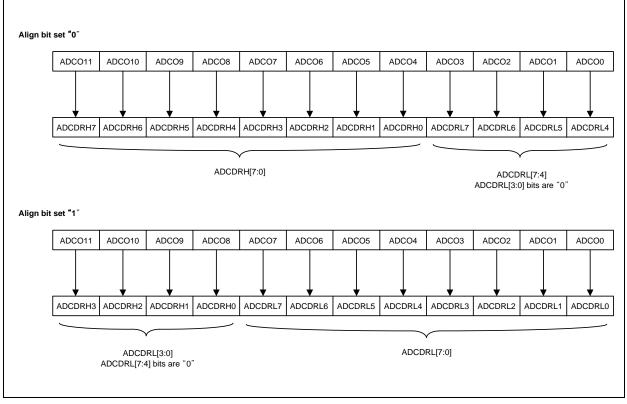



Figure 11.55 ADC Operation for Align Bit



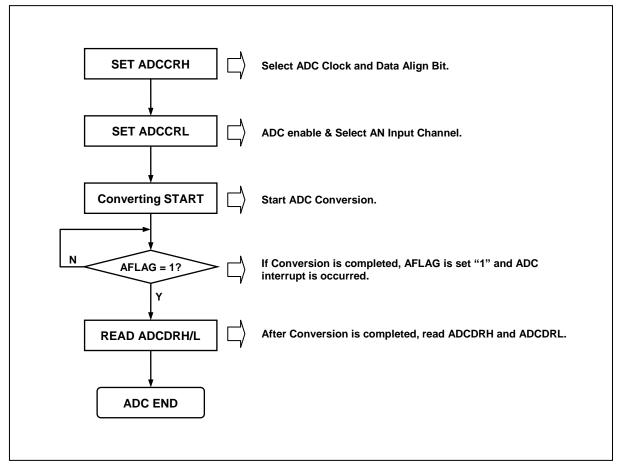



Figure 11.56 A/D Converter Operation Flow

### 11.11.5 Register Map

Table 11-1	8 ADC Regis	ster Map
------------	-------------	----------

Name	Address	Dir	Default	Description
ADCDRH	9FH	R	ххН	A/D Converter Data High Register
ADCDRL	9EH	R	ххН	A/D Converter Data Low Register
ADCCRH	9DH	R/W	00H	A/D Converter Control High Register
ADCCRL	9CH	R/W	00H	A/D Converter Control Low Register

# 11.11.6 ADC Register Description

The ADC register consists of A/D converter data high register (ADCDRH), A/D converter data low register (ADCDRL), A/D converter control high register (ADCCRH) and A/D converter control low register (ADCCRL).

# 11.11.7 Register Description for ADC

#### ADCDRH (A/D Converter Data High Register) : 9FH

7	6	5	4	3	2	1	0
ADDM11	ADDM10	ADDM9	ADDM8	ADDM7	ADDM6	ADDM5	ADDM4
				ADDL11	ADDL10	ADDL9	ADDL8
R	R	R	R	R	R	R	R

Initial value : xxH

ADDM[11:4] MS ADDL[11:8] LS

4] MSB align, A/D Converter High Data (8-bit)

**:8]** LSB align, A/D Converter High Data (4-bit)

#### ADCDRL (A/D Converter Data Low Register) : 9EH

7	6	5	4	3	2	1	0	
ADDM3 ADDL7	ADDM2 ADDL6	ADDM1 ADDL5	ADDM0 ADDL4	ADDL3	ADDL2	ADDL1	ADDL0	
R	R	R	R	R-	R	R	R	
							nitial value : x	хH

ADDM[3:0] ADDL[7:0] MSB align, A/D Converter Low Data (4-bit) LSB align, A/D Converter Low Data (8-bit)

#### ADCCRH (A/D Converter High Register) : 9DH

7	6	5	4	3		2	1	0		
ADCIFR	_	TRIG2	TRIG1	TRIG	60 A	ALIGN	CKSEL1	CKSEL0		
RW	_	RW	RW	RM	1	RW	RW	RW		
								Initial value : 00		
	AD	CIFR	When AD write '0' to	When ADC interrupt occurs, this bit becomes '1'. For clearing bit write '0' to this bit or auto clear by INT_ACK signal.						
			0	ADC Inter	rupt no gei	neration				
			1	ADC Inter	rupt genera	ation				
	TRI	IG[2:0]	A/D Trigge	er Signal Sele	ection					
			TRIG2	TRIG1	TRIG0	Descr	iption			
			0	0	0	ADST				
			0	0	1	Timer	1 A match sig	nal		
			0	1	0	Timer	4 overflow ev	ent signal		
			0	1	1	Timer	4 A match ev	ent signal		
			1	0	0	Timer	4 B match event signal			
			1	0	1	Timer 4 C match event signal				
			Other Valu	ues		Not us	sed			
	ALI	IGN	A/D Conve	erter data alio	gn selectio	n.				
			0	MSB align	(ADCDRH	H[7:0], A[	DCDRL[7:4])			
			1	LSB align	(ADCRDH	[3:0], AD	CDRL[7:0])			
	СК	SEL[1:0]	A/D Conve	erter Clock se	election					
			CKSEL1	CKSEL0	Descript	tion				
			0	0	fx/1					
			0	1	fx/2					
			1	0	fx/4					
			1	1	fx/8					



7	6	5	4		3	2	1	0
STBY	ADST	REFSEL	AFLA	g ad	SEL3	ADSEL2	ADSEL1	ADSEL0
RW	RW	RW	R	F	<b>R</b> W	RW	RW	RW
								Initial value : 00H
	STE	BY		peration of module is		ally disabled	d at stop mode	<b>)</b>
			0	ADC mod	lule disab	le		
			1	ADC mod	lule enabl	е		
	AD	ST	Control A/	D Convers	ion stop/st	tart.		
			0	No effect				
			1	ADC Con	version S	tart and auto	o clear	
	REI	FSEL	A/D Conve	erter Refere	ence Sele	ction		
			0	Internal F	Reference	(VDD)		
			1	External	Reference	e (AVREF)		
	AFI	LAG	A/D Conve bit is set to	erter Opera o '0' or whe	ation State In the CPU	e (This bit is J is at STOP	cleared to '0' mode)	when the STBY
			0	During A/	D Conver	sion		
			1	A/D Conv	ersion fin	ished		
	AD	SEL[3:0]	A/D Conve	erter input s	selection			
			ADSEL3	ADSEL2	ADSEL1	ADSEL0	Description	
			0	0	0	0	AN0	
			0	0	0	1	AN1	
			0	0	1	0	AN2	
			0	0	1	1	AN3	
			0	1	0	0	AN4	
			0	1	0	1	AN5	
			0	1	1	0	AN6	
			0	1	1	1	AN7	
			1	0	0	0	AN8	
			1	0	0	1	AN9	
			1	0	1	0	AN10	
			1	0	1	1	AN11	
			1	1	0	0	AN12	
			1	1	0	1	AN13	
			1	1	1	0	AN14	
			1	1	1	1	AN15	

# ADCCRL (A/D Converter Counter Low Register) : 9CH

# 11.12 USI0 (UART + SPI + I2C)

# 11.12.1 Overview

The USI0 consists of USI0 control register1/2/3/4, USI0 status register 1/2, USI0 baud-rate generation register, USI0 data register, USI0 SDA hold time register, USI0 SCL high period register, USI0 SCL low period register, and USI0 slave address register (USI0CR1, USI0CR2, USI0CR3, USI0CR4, USI0ST1, USI0ST2, USI0BD, USI0DR, USI0SDHR, USI0SCHR, USI0SCLR, USI0SAR).

The operation mode is selected by the operation mode of USI0 selection bits (USI0MS[1:0]).

It has four operating modes:

- Asynchronous mode (UART)
- Synchronous mode
- SPI mode
- I2C mode



# 11.12.2 USI0 UART Mode

The universal synchronous and asynchronous serial receiver and transmitter (UART) is a highly flexible serial communication device. The main features are listed below.

- Full Duplex Operation (Independent Serial Receive and Transmit Registers)
- Asynchronous or Synchronous Operation
- Baud Rate Generator
- Supports Serial Frames with 5,6,7,8, or 9 Data Bits and 1 or 2 Stop Bits
- Odd or Even Parity Generation and Parity Check Supported by Hardware
- Data OverRun Detection
- Framing Error Detection
- Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
- Double Speed Asynchronous communication mode

USI0 has three main parts of clock generator, Transmitter and receiver. The clock generation logic consists of synchronization logic for external clock inut used by synchronous or SPI slave operation, and the baud rate generator for asynchronous or master (synchronous or SPI) operation.

The Transmitter consists of a single write buffer, a serial shift register, parity generator and control logic for handling different serial frame formats. The write buffer allows continuous transfer of data without any delay between frames. The receiver is the most complex part of the UART module due to its clock and data recovery units. The recovery unit is used for asynchronous data reception. In addition to the recovery unit, the receiver includes a parity checker, a shift register, a two-level receive FIFO (USI0DR) and control logic. The receiver supports the same frame formats as the transmitter and can detect frame error, data overrun and parity errors.

# 11.12.3 USI0 UART Block Diagram

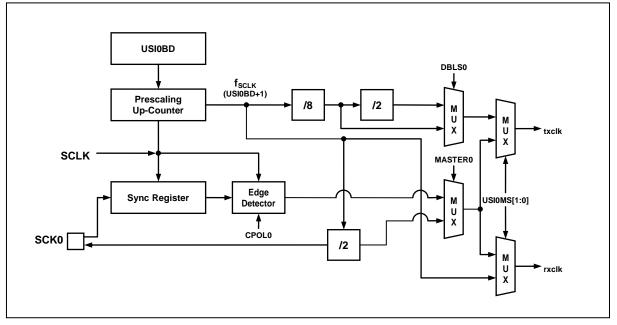




Figure 11.57 USI0 UART Block Diagram



# 11.12.4 USI0 Clock Generation



#### Figure 11.58 Clock Generation Block Diagram (USI0)

The clock generation logic generates the base clock for the transmitter and receiver. The USI0 supports four modes of clock operation and those are normal asynchronous, double speed asynchronous, master synchronous and slave synchronous mode. The clock generation scheme for master SPI and slave SPI mode is the same as master synchronous and slave synchronous operation mode. The USI0MS[1:0] bits in USI0CR1 register selects asynchronous or synchronous operation. Asynchronous double speed mode is controlled by the DBLS0 bit in the USI0CR2 register. The MASTER0 bit in USI0CR3 register controls whether the clock source is internal (master mode, output pin) or external (slave mode, input pin). The SCK0 pin is active only when the USI0 operates in synchronous or SPI mode.

Following table shows the equations for calculating the baud rate (in bps).

Operating Mode	Equation for Calculating Baud Rate
Asynchronous Normal Mode (DBLS0=0)	Baud Rate = $\frac{fx}{16(USI0BD + 1)}$
Asynchronous Double Speed Mode (DBLS0=1)	Baud Rate = $\frac{fx}{8(USI0BD + 1)}$
Synchronous or SPI Master Mode	Baud Rate = $\frac{fx}{2(USI0BD + 1)}$

# 11.12.5 USI0 External Clock (SCK0)

External clocking is used in the synchronous mode of operation.

External clock input from the SCK0 pin is sampled by a synchronization logic to remove meta-stability. The output from the synchronization logic must be passed through an edge detector before it is used by the transmitter and receiver. This process introduces two CPU clock period delay. The maximum frequency of the external SCK0 pin is limited up-to 1MHz.

### 11.12.6 USI0 Synchronous mode operation

When synchronous or SPI mode is used, the SCK0 pin will be used as either clock input (slave) or clock output (master). Data sampling and transmitter is issued on the different edge of SCK0 clock each other. For example, if data input on RXD0 (MISO0 in SPI mode) pin is sampled on the rising edge of SCK0 clock, data output on TXD0 (MOSI0 in SPI mode) pin is altered on the falling edge.

The CPOL0 bit in USI0CR1 register selects which SCK0 clock edge is used for data sampling and which is used for data change. As shown in the figure below, when CPOL0 is zero, the data will be changed at rising SCK0 edge and sampled at falling SCK0 edge.

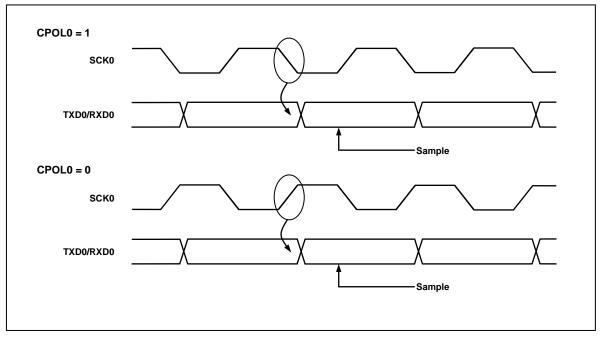



Figure 11.59 Synchronous Mode SCK0 Timing (USI0)



# 11.12.7 USI0 UART Data format

A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and optionally a parity bit for error detection.

The UART supports all 30 combinations of the following as valid frame formats.

- 1 start bit
- 5, 6, 7, 8 or 9 data bits
- no, even or odd parity bit
- 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit (LSB). Then the next data bits, up to nine, are succeeding, ending with the most significant bit (MSB). If parity function is enabled, the parity bit is inserted between the last data bit and the stop bit. A high-to-low transition on data pin is considered as start bit. When a complete frame is transmitted, it can be directly followed by a new frame, or the communication line can be set to an idle state. The idle means high state of data pin. The following figure shows the possible combinations of the frame formats. Bits inside brackets are optional.

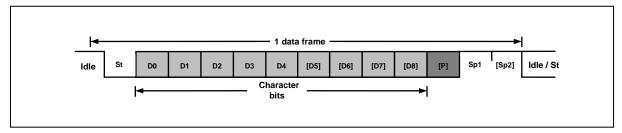



Figure 11.60 Frame Format (USI0)

1 data frame consists of the following bits

- Idle No communication on communication line (TXD0/RXD0)
- St Start bit (Low)
- Dn Data bits (0~8)
- Parity bit ----- Even parity, Odd parity, No parity
- Stop bit(s) ----- 1 bit or 2 bits

The frame format used by the UART is set by the USI0S[2:0], USI0PM[1:0] bits in USI0CR1 register and USI0SB bit in USI0CR3 register. The Transmitter and Receiver use the same setting.

#### 11.12.8 USI0 UART Parity bit

The parity bit is calculated by doing an exclusive-OR of all the data bits. If odd parity is used, the result of the exclusive-O is inverted. The parity bit is located between the MSB and first stop bit of a serial frame.

$$\begin{split} P_{even} &= D_{n-1} \wedge \dots \wedge D_3 \wedge D_2 \wedge D_1 \wedge D_0 \wedge 0 \\ P_{odd} &= D_{n-1} \wedge \dots \wedge D_3 \wedge D_2 \wedge D_1 \wedge D_0 \wedge 1 \\ P_{even} &: Parity bit using even parity \\ P_{odd} &: Parity bit using odd parity \end{split}$$

# 11.12.9 USI0 UART Transmitter

The UART transmitter is enabled by setting the TXE0 bit in USI0CR2 register. When the Transmitter is enabled, the TXD0 pin should be set to TXD0 function for the serial output pin of UART by the P4FSR[3:2]. The baud-rate, operation mode and frame format must be setup once before doing any transmission. In synchronous operation mode, the SCK0 pin is used as transmission clock, so it should be selected to do SCK0 function by P4FSR[5:4].

### 11.12.9.1 USI0 UART Sending Tx data

A data transmission is initiated by loading the transmit buffer (USI0DR register I/O location) with the data to be transmitted. The data written in transmit buffer is moved to the shift register when the shift register is ready to send a new frame. The shift register is loaded with the new data if it is in idle state or immediately after the last stop bit of the previous frame is transmitted. When the shift register is loaded with new data, it will transfer one complete frame according to the settings of control registers. If the 9-bit characters are used in asynchronous or synchronous operation mode, the ninth bit must be written to the USI0TX8 bit in USI0CR3 register before it is loaded to the transmit buffer (USI0DR register).

### 11.12.9.2 USI0 UART Transmitter flag and interrupt

The UART transmitter has 2 flags which indicate its state. One is UART data register empty flag (DRE0) and the other is transmit complete flag (TXC0). Both flags can be interrupt sources.

DRE0 flag indicates whether the transmit buffer is ready to receive new data. This bit is set when the transmit buffer is empty and cleared when the transmit buffer contains data to be transmitted but has not yet been moved into the shift register. And also this flag can be cleared by writing '0' to this bit position. Writing '1' to this bit position is prevented.

When the data register empty interrupt enable (DRIE0) bit in USI0CR2 register is set and the global interrupt is enabled, USI0ST1 status register empty interrupt is generated while DRE0 flag is set.

The transmit complete (TXC0) flag bit is set when the entire frame in the transmit shift register has been shifted out and there is no more data in the transmit buffer. The TXC0 flag is automatically cleared when the transmit complete interrupt service routine is executed, or it can be cleared by writing '0' to TXC0 bit in USI0ST1 register.

When the transmit complete interrupt enable (TXCIE0) bit in USI0CR2 register is set and the global interrupt is enabled, UART transmit complete interrupt is generated while TXC0 flag is set.



### 11.12.9.3 USI0 UART Parity Generator

The parity generator calculates the parity bit for the serial frame data to be sent. When parity bit is enabled (USI0PM1=1), the transmitter control logic inserts the parity bit between the MSB and the first stop bit of the frame to be sent.

### 11.12.9.4 USI0 UART Disabling Transmitter

Disabling the transmitter by clearing the TXE0 bit will not become effective until ongoing transmission is completed. When the Transmitter is disabled, the TXD0 pin can be used as a normal general purpose I/O (GPIO).

#### 11.12.10 USI0 UART Receiver

The UART receiver is enabled by setting the RXE0 bit in the USI0CR2 register. When the receiver is enabled, the RXD0 pin should be set to RXD0 function for the serial input pin of UART by P4FSR[1:0]. The baud-rate, mode of operation and frame format must be set before serial reception. In synchronous or SPI operation mode the SCK0 pin is used as transfer clock, so it should be selected to do SCK0 function by P4FSR[5:4]. In SPI operation mode the SS0 input pin in slave mode or can be configured as SS0 output pin in master mode. This can be done by setting USI0SSEN bit in USI0CR3 register.

#### 11.12.10.1 USI0 UART Receiving Rx data

When UART is in synchronous or asynchronous operation mode, the receiver starts data reception when it detects a valid start bit (LOW) on RXD0 pin. Each bit after start bit is sampled at pre-defined baud-rate (asynchronous) or sampling edge of SCK0 (synchronous), and shifted into the receive shift register until the first stop bit of a frame is received. Even if there's 2nd stop bit in the frame, the 2nd stop bit is ignored by the receiver. That is, receiving the first stop bit means that a complete serial frame is present in the receiver shift register and contents of the shift register are to be moved into the receive buffer. The receive buffer is read by reading the USI0DR register.

If 9-bit characters are used (USI0S[2:0] = "111"), the ninth bit is stored in the USI0RX8 bit position in the USI0CR3 register. The 9th bit must be read from the USI0RX8 bit before reading the low 8 bits from the USI0DR register. Likewise, the error flags FE0, DOR0, PE0 must be read before reading the data from USI0DR register. It's because the error flags are stored in the same FIFO position of the receive buffer.



# 11.12.10.2 USI0 UART Receiver Flag and Interrupt

The UART receiver has one flag that indicates the receiver state.

The receive complete (RXC0) flag indicates whether there are unread data in the receive buffer. This flag is set when there are unread data in the receive buffer and cleared when the receive buffer is empty. If the receiver is disabled (RXE0=0), the receiver buffer is flushed and the RXC0 flag is cleared.

When the receive complete interrupt enable (RXCIE0) bit in the USI0CR2 register is set and global interrupt is enabled, the UART receiver complete interrupt is generated while RXC0 flag is set.

The UART receiver has three error flags which are frame error (FE0), data overrun (DOR0) and parity error (PE0). These error flags can be read from the USI0ST1 register. As received data are stored in the 2-level receive buffer, these error flags are also stored in the same position of receive buffer. So, before reading received data from USI0DR register, read the USI0ST1 register first which contains error flags.

The frame error (FE0) flag indicates the state of the first stop bit. The FE0 flag is '0' when the stop bit was correctly detected as "1", and the FE0 flag is "1" when the stop bit was incorrect, i.e. detected as "0". This flag can be used for detecting out-of-sync conditions between data frames.

The data overrun (DOR0) flag indicates data loss due to a receive buffer full condition. DOR0 occurs when the receive buffer is full, and another new data is present in the receive shift register which are to be stored into the receive buffer. After the DOR0 flag is set, all the incoming data are lost. To prevent data loss or clear this flag, read the receive buffer.

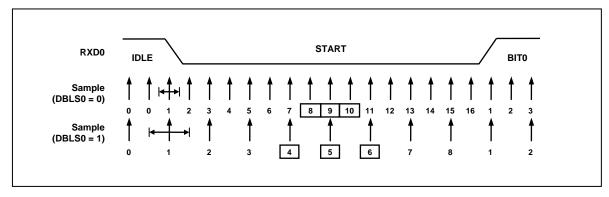
The parity error (PE0) flag indicates that the frame in the receive buffer had a parity error when received. If parity check function is not enabled (USI0PM1=0), the PE bit is always read "0".

#### 11.12.10.3 USI0 UART Parity Checker

If parity bit is enabled (USI0PM1=1), the Parity Checker calculates the parity of the data bits in incoming frame and compares the result with the parity bit from the received serial frame.

#### 11.12.10.4 USI0 UART Disabling Receiver

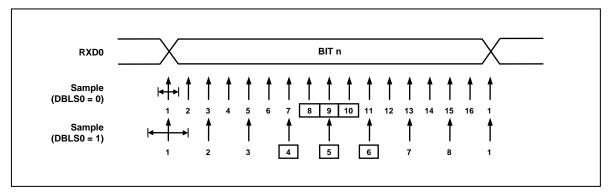
In contrast to transmitter, disabling the Receiver by clearing RXE0 bit makes the Receiver inactive immediately. When the receiver is disabled, the receiver flushes the receive buffer, the remaining data in the buffer is all reset, and the RXD0 pin can be used as a normal general purpose I/O (GPIO).




### 11.12.10.5 USI0 Asynchronous Data Reception

To receive asynchronous data frame, the UART includes a clock and data recovery unit. The clock recovery logic is used for synchronizing the internally generated baud-rate clock to the incoming asynchronous serial frame on the RXD0 pin.

The data recovery logic samples and low pass filters the incoming bits, and this removes the noise of RXD0 pin.


The next figure illustrates the sampling process of the start bit of an incoming frame. The sampling rate is 16 times of the baud-rate in normal mode and 8 times the aud-rate for double speed mode (DBLS0=1). The horizontal arrows show the synchronization variation due to the asynchronous sampling process. Note that larger time variation is shown when using the double speed mode.



#### Figure 11.61 Asynchronous Start Bit Sampling (USI0)

When the receiver is enabled (RXE0=1), the clock recovery logic tries to find a high-to-low transition on the RXD0 line, the start bit condition. After detecting high to low transition on RXD0 line, the clock recovery logic uses samples 8, 9 and 10 for normal mode to decide if a valid start bit is received. If more than 2 samples have logical low level, it is considered that a valid start bit is detected and the internally generated clock is synchronized to the incoming data frame. And the data recovery can begin. The synchronization process is repeated for each start bit.

As described above, when the receiver clock is synchronized to the start bit, the data recovery can begin. Data recovery process is almost similar to the clock recovery process. The data recovery logic samples 16 times for each incoming bits for normal mode and 8 times for double speed mode, and uses sample 8, 9 and 10 to decide data value. If more than 2 samples have low levels, the received bit is considered to a logic '0' and if more than 2 samples have high levels, the received bit is considered to a logic '1'. The data recovery process is then repeated until a complete frame is received including the first stop bit. The decided bit value is stored in the receive shift register in order. Note that the Receiver only uses the first stop bit of a frame. Internally, after receiving the first stop bit, the Receiver is in idle state and waiting to find start bit.





# **ABOV**

The process for detecting stop bit is like clock and data recovery process. That is, if 2 or more samples of 3 center values have high level, correct stop bit is detected, else a frame error (FE0) flag is set. After deciding whether the first stop bit is valid or not, the Receiver goes to idle state and monitors the RXD0 line to check a valid high to low transition is detected (start bit detection).

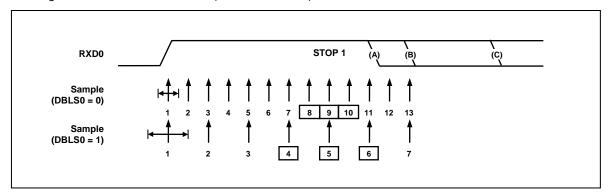



Figure 11.63 Stop Bit Sampling and Next Start Bit Sampling (USI0)



### 11.12.11 USI0 SPI Mode

The USI0 can be set to operate in industrial standard SPI compliant mode. The SPI mode has the following features.

- Full Duplex, Three-wire synchronous data transfer
- Mater and Slave Operation
- Supports all four SPI0 modes of operation (mode 0, 1, 2, and 3)
- Selectable LSB first or MSB first data transfer
- Double buffered transmit and receive
- Programmable transmit bit rate

When SPI mode is enabled (USI0MS[1:0]="11"), the slave select (SS0) pin becomes active LOW input in slave mode operation, or can be output in master mode operation if USI0SSEN bit is set to '0'.

Note that during SPI mode of operation, the pin RXD0 is renamed as MISO0 and TXD0 is renamed as MOSI0 for compatibility to other SPI devices.

### 11.12.12 USI0 SPI Clock Formats and Timing

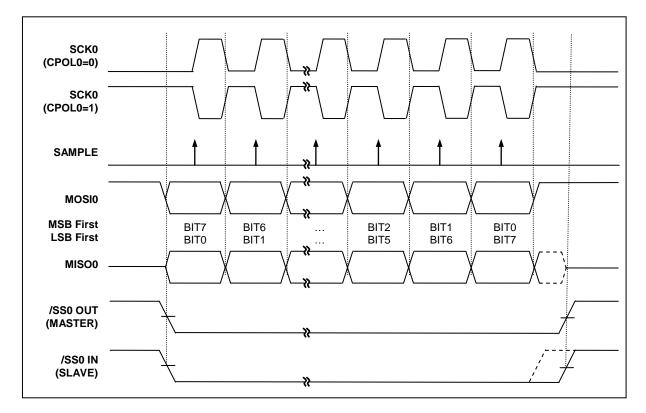
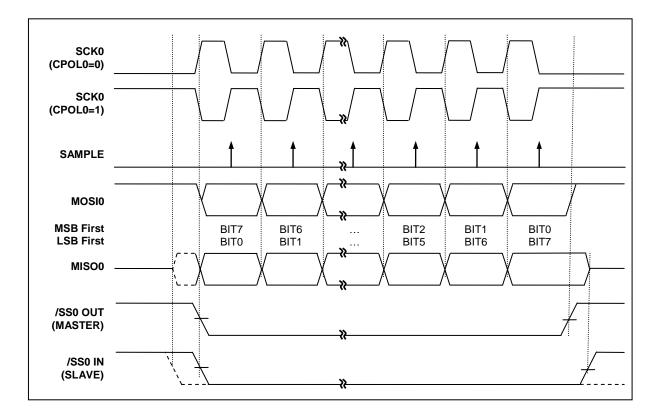

To accommodate a wide variety if synchronus serial peripherals from different manufacturers, the USI0 has a clock polarity bit (CPOL0) and a clock phase control bit (CPHA0) to select one of four clock formats for data transfers. CPOL0 selectively insert an inverter in series with the clock. CPHA0 chooses between two different clock phase relationships between the clock and data. Note that CPHA0 and CPOL0 bits in USI0CR1 register have different meanings according to the USI0MS[1:0] bits which decides the operating mode of USI0.

Table below shows four combinations of CPOL0 and CPHA0 for SPI mode 0, 1, 2, and 3.

SPI Mode	CPOL0	CPHA0	Leading Edge	Trailing Edge
0	0	0	Sample (Rising)	Setup (Falling)
1	0	1	Setup (Rising)	Sample (Falling)
2	1	0	Sample (Falling)	Setup (Rising)
3	1	1	Setup (Falling)	Sample (Rising)

#### Table 11-20 CPOL0 Functionality






#### Figure 11.64 USI0 SPI Clock Formats when CPHA0=0

When CPHA0=0, the slave begins to drive its MISO0 output with the first data bit value when SS0 goes to active low. The first SCK0 edge causes both the master and the slave to sample the data bit value on their MISO0 and MOSI0 inputs, respectively. At the second SCK0 edge, the USI0 shifts the second data bit value out to the MOSI0 and MISO0 outputs of the master and slave, respectively. Unlike the case of CPHA0=1, when CPHA0=0, the slave's SS0 input must go to its inactive high level between transfers. This is because the slave can prepare the first data bit when it detects falling edge of SS0 input.





#### Figure 11.65 USI0 SPI Clock Formats when CPHA0=1

When CPHA0=1, the slave begins to drive its MISO0 output when SS0 goes active low, but the data is not defined until the first SCK0 edge. The first SCK0 edge shifts the first bit of data from the shifter onto the MOSI0 output of the master and the MISO0 output of the slave. The next SCK0 edge causes both the master and slave to sample the data bit value on their MISO0 and MOSI0 inputs, respectively. At the third SCK0 edge, the USI0 shifts the second data bit value out to the MOSI0 and MISO0 output of the master and slave respectively. When CPHA0=1, the slave's SS0 input is not required to go to its inactive high level between transfers.

Because the SPI logic reuses the USI0 resources, SPI mode of operation is similar to that of synchronous or asynchronous operation. An SPI transfer is initiated by checking for the USI0 Data Register Empty flag (DRE0=1) and then writing a byte of data to the USI0DR Register. In master mode of operation, even if transmission is not enabled (TXE0=0), writing data to the USI0DR register is necessary because the clock SCK0 is generated from transmitter block.

# 11.12.13 USI0 SPI Block Diagram

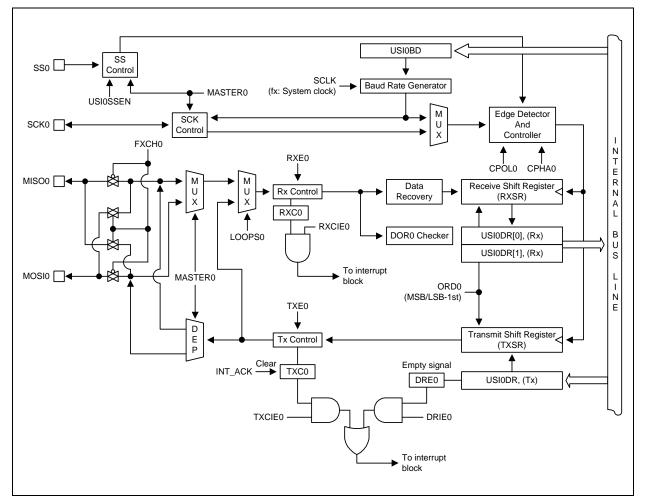



Figure 11.66 USI0 SPI Block Diagram



### 11.12.14 USI0 I2C Mode

The USI0 can be set to operate in industrial standard serial communicatin protocols mode. The I2C mode uses 2 bus lines serial data line (SDA0) and serial clock line (SCL0) to exchange data. Because both SDA0 and SCL0 lines are open-drain output, each line needs pull-up resistor. The features are as shown below.

- Compatible with I2C bus standard
- Multi-master operation
- Up to 400kHz data transfer read speed
- 7 bit address
- Both master and slave operation
- Bus busy detection

### 11.12.15 USI0 I2C Bit Transfer

The data on the SDA0 line must be stable during HIGH period of the clock, SCL0. The HIGH or LOW state of the data line can only change when the clock signal on the SCL0 line is LOW. The exceptions are START(S), repeated START(Sr) and STOP(P) condition where data line changes when clock line is high.

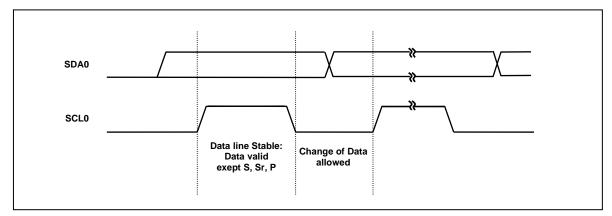



Figure 11.67 Bit Transfer on the I2C-Bus (USI0)

### 11.12.16 USI0 I2C Start / Repeated Start / Stop

One master can issue a START (S) condition to notice other devices connected to the SCL0, SDA0 lines that it will use the bus. A STOP (P) condition is generated by the master to release the bus lines so that other devices can use it.

A high to low transition on the SDA0 line while SCL0 is high defines a START (S) condition.

A low to high transition on the SDA0 line while SCL0 is high defines a STOP (P) condition.

START and STOP conditions are always generated by the master. The bus is considered to be busy after START condition. The bus is considered to be free again after STOP condition, ie, the bus is busy between START and STOP condition. If a repeated START condition (Sr) is generated instead of STOP condition, the bus stays busy. So, the START and repeated START conditions are functionally identical.

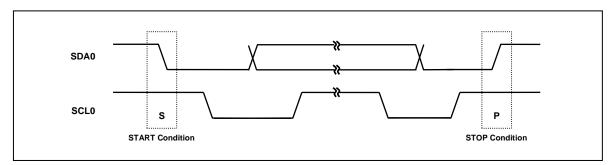



Figure 11.68 START and STOP Condition (USI0)

### 11.12.17 USI0 I2C Data Transfer

Every byte put on the SDA0 line must be 8-bits long. The number of bytes that can be transmitted per transfer is unlimited. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. If a slave can't receive or transmit another complete byte of data until it has performed some other function, it can hold the clock line SCL0 LOW to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCL0.

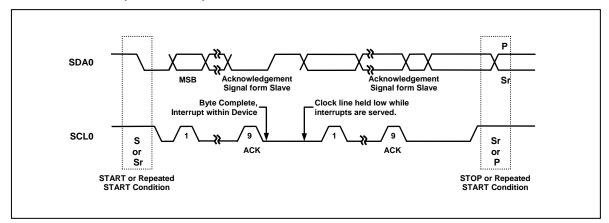



Figure 11.69 Data Transfer on the I2C-Bus (USI0)



### 11.12.18 USI0 I2C Acknowledge

The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA0 line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA0 line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse. When a slave is addressed by a master (Address Packet), and if it is unable to receive or transmit because it's performing some real time function, the data line must be left HIGH by the slave. And also, when a slave addressed by a master is unable to receive more data bits, the slave receiver must release the SDA0 line (Data Packet). The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.

If a master receiver is involved in a transfer, it must signal the end of data to the slave transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave transmitter must release the data line to allow the master to generate a STOP or repeated START condition.

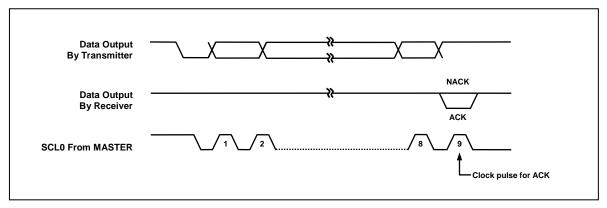



Figure 11.70 Acknowledge on the I2C-Bus (USI0)

#### 11.12.19 USI0 I2C Synchronization / Arbitration

Clock synchronization is performed using the wired-AND connection of I2C interfaces to the SCL0 line. This means that a HIGH to LOW transition on the SCL0 line will cause the devices concerned to start counting off their LOW period and it will hold the SCL0 line in that state until the clock HIGH state is reached. However the LOW to HIGH transition of this clock may not change the state of the SCL0 line if another clock is still within its LOW period. In this way, a synchronized SCL0 clock is generated with its LOW period determined by the device with the longest clock LOW period, and its HIGH period determined by the one with the shortest clock HIGH period.

A master may start a transfer only if the bus is free. Two or more masters may generate a START condition. Arbitration takes place on the SDA0 line, while the SCL0 line is at the HIGH level, in such a way that the master which transmits a HIGH level, while another master is transmitting a LOW level will switch off its DATA output state because the level on the bus doesn't correspond to its own level. Arbitration continues for many bits until a winning master gets the ownership of I2C bus. Its first stage is comparison of the address bits.



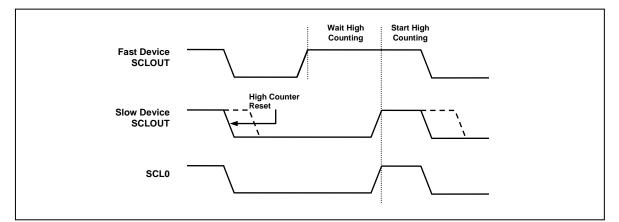



Figure 11.71 Clock Synchronization during Arbitration Procedure (USI0)

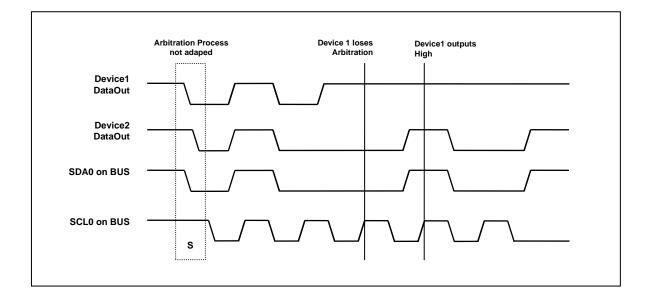



Figure 11.72 Arbitration Procedure of Two Masters (USI0)

#### 11.12.20 USI0 I2C Operation

The I2C is byte-oriented and interrupt based. Interrupts are issued after all bus events except for a transmission of a START condition. Because the I2C is interrupt based, the application software is free to carry on other operations during a I2C byte transfer.

Note that when a I2C interrupt is generated, IIC0IFR flag in USI0CR4 register is set, it is cleared by writing an any value to USI0ST2. When I2C interrupt occurs, the SCL0 line is hold LOW until writing any value to USI0ST2. When the IIC0IFR flag is set, the USI0ST2 contains a value indicating the current state of the I2C bus. According to the value in USI0ST2, software can decide what to do next.

I2C can operate in 4 modes by configuring master/slave, transmitter/receiver. The operating mode is configured by a winning master. A more detailed explanation follows below.



# 11.12.20.1 USI0 I2C Master Transmitter

To operate I2C in master transmitter, follow the recommended steps below.

- 1. Enable I2C by setting USI0MS[1:0] bits in USI0CR1 and USI0EN bit in USI0CR2. This provides main clock to the peripheral.
- Load SLA0+W into the USI0DR where SLA0 is address of slave device and W is transfer direction from the viewpoint of the master. For master transmitter, W is '0'. Note that USI0DR is used for both address and data.
- 3. Configure baud rate by writing desired value to both USI0SCLR and USI0SCHR for the Low and High period of SCL0 line.
- 4. Configure the USI0SDHR to decide when SDA0 changes value from falling edge of SCL0. If SDA0 should change in the middle of SCL0 LOW period, load half the value of USI0SCLR to the USI0SDHR.
- 5. Set the STARTC0 bit in USI0CR4. This transmits a START condition. And also configure how to handle interrupt and ACK signal. When the STARTC0 bit is set, 8-bit data in USI0DR is transmitted out according to the baud-rate.
- 6. This is ACK signal processing stage for address packet transmitted by master. When 7-bit address and 1-bit transfer direction is transmitted to target slave device, the master can know whether the slave acknowledged or not in the 9th high period of SCL0. If the master gains bus mastership, I2C generates GCALL interrupt regardless of the reception of ACK from the slave device. When I2C loses bus mastership during arbitration process, the MLOST0 bit in USI0ST2 is set, and I2C waits in idle state or can be operate as an addressed slave. To operate as a slave when the MLOST0 bit in USI0ST2 is set, the ACK0EN bit in USI0CR4 must be set and the received 7-bit address must equal to the USI0SLA[6:0] bits in USI0SAR. In this case I2C operates as a slave transmitter or a slave receiver (go to appropriate section). In this stage, I2C holds the SCL0 LOW. This is because to decide whether I2C continues serial transfer or stops communication. The following steps continue assuming that I2C does not lose mastership during first data transfer.

I2C (Master) can choose one of the following cases regardless of the reception of ACK signal from slave.

1) Master receives ACK signal from slave, so continues data transfer because slave can receive more data from master. In this case, load data to transmit to USI0DR.

2) Master stops data transfer even if it receives ACK signal from slave. In this case, set the STOPC0 bit in USI0CR4.

3) Master transmits repeated START condition with not checking ACK signal. In this case, load SLA0+R/W into the USI0DR and set STARTC0 bit in USI0CR4.

After doing one of the actions above, write any arbitrary to USI0ST2 to release SCL0 line. In case of 1), move to step 7. In case of 2), move to step 9 to handle STOP interrupt. In case of 3), move to step 6 after transmitting the data in USI0DR and if transfer direction bit is '1' go to master receiver section.

- 7. 1-Byte of data is being transmitted. During data transfer, bus arbitration continues.
- 8. This is ACK signal processing stage for data packet transmitted by master. I2C holds the SCL0 LOW. When I2C loses bus mastership while transmitting data arbitrating other masters, the MLOST0 bit in USI0ST2 is set. If then, I2C waits in idle state. When the data in USI0DR is transmitted completely, I2C generates TEND0 interrupt.

I2C can choose one of the following cases regardless of the reception of ACK signal from slave.

1) Master receives ACK signal from slave, so continues data transfer because slave can receive more data from master. In this case, load data to transmit to USI0DR.

2) Master stops data transfer even if it receives ACK signal from slave. In this case, set the STOPC0 bit in USI0CR4.

3) Master transmits repeated START condition with not checking ACK signal. In this case, load SLA0+R/W into the USI0DR and set the STARTC0 bit in USI0CR4.

After doing one of the actions above, write any arbitrary to USI0ST2 to release SCL0 line. In case of 1), move to step 7. In case of 2), move to step 9 to handle STOP interrupt. In case of 3), move to step 6 after transmitting the data in USI0DR, and if transfer direction bit is '1' go to master receiver section.

9. This is the final step for master transmitter function of I2C, handling STOP interrupt. The STOP bit indicates that data transfer between master and slave is over. To clear USI0ST2, write any value to USI0ST2. After this, I2C enters idle state.



The next figure depicts above process for master transmitter operation of I2C.

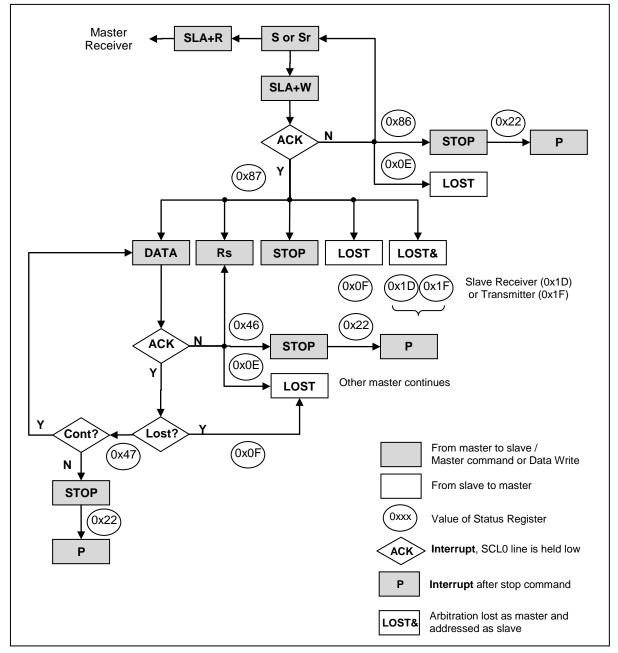



Figure 11.73 Formats and States in the Master Transmitter Mode (USI0)



### 11.12.20.2 USI0 I2C Master Receiver

To operate I2C in master receiver, follow the recommended steps below.

- 1. Enable I2C by setting USI0MS[1:0] bits in USI0CR1 and USI0EN bit in USI0CR2. This provides main clock to the peripheral.
- 2. Load SLA0+R into the USI0DR where SLA is address of slave device and R is transfer direction from the viewpoint of the master. For master receiver, R is '1'. Note that USI0DR is used for both address and data.
- 3. Configure baud rate by writing desired value to both USI0SCLR and USI0SCHR for the Low and High period of SCL0 line.
- 4. Configure the USI0SDHR to decide when SDA0 changes value from falling edge of SCL0. If SDA0 should change in the middle of SCL0 LOW period, load half the value of USI0SCLR to the USI0SDHR.
- 5. Set the STARTC0 bit in USI0CR4. This transmits a START condition. And also configure how to handle interrupt and ACK signal. When the STARTC0 bit is set, 8-bit data in USI0DR is transmitted out according to the baud-rate.
- 6. This is ACK signal processing stage for address packet transmitted by master. When 7-bit address and 1-bit transfer direction is transmitted to target slave device, the master can know whether the slave acknowledged or not in the 9th high period of SCL0. If the master gains bus mastership, I2C generates GCALL interrupt regardless of the reception of ACK from the slave device. When I2C loses bus mastership during arbitration process, the MLOST0 bit in USI0ST2 is set, and I2C waits in idle state or can be operate as an addressed slave. To operate as a slave when the MLOST0 bit in USI0ST2 is set, the ACK0EN bit in USI0CR4 must be set and the received 7-bit address must equal to the USI0SLA[6:0] bits in USI0SAR. In this case I2C operates as a slave transmitter or a slave receiver (go to appropriate section). In this stage, I2C holds the SCL0 LOW. This is because to decide whether I2C continues serial transfer or stops communication. The following steps continue assuming that I2C does not lose mastership during first data transfer.

I2C (Master) can choose one of the following cases according to the reception of ACK signal from slave.

1) Master receives ACK signal from slave, so continues data transfer because slave can prepare and transmit more data to master. Configure ACK0EN bit in USI0CR4 to decide whether I2C ACKnowledges the next data to be received or not.

2) Master stops data transfer because it receives no ACK signal from slave. In this case, set the STOPC0 bit in USI0CR4.

3) Master transmits repeated START condition due to no ACK signal from slave. In this case, load SLA0+R/W into the USI0DR and set STARTC0 bit in USI0CR4.

After doing one of the actions above, write arbitrary value to USI0ST2 to release SCL0 line. In case of 1), move to step 7. In case of 2), move to step 9 to handle STOP interrupt. In case of 3), move to step 6 after transmitting the data in USI0DR and if transfer direction bit is '0' go to master transmitter section.

- 7. 1-Byte of data is being received.
- 8. This is ACK signal processing stage for data packet transmitted by slave. I2C holds the SCL0 LOW. When 1-Byte of data is received completely, I2C generates TEND0 interrupt.

I2C0 can choose one of the following cases according to the RXACK0 flag in USI0ST2.

1) Master continues receiving data from slave. To do this, set ACK0EN bit in USI0CR4 to ACKnowledge the next data to be received.

2) Master wants to terminate data transfer when it receives next data by not generating ACK signal. This can be done by clearing ACK0EN bit in USI0CR4.

3) Because no ACK signal is detected, master terminates data transfer. In this case, set the STOPC0 bit in USI0CR4.

4) No ACK signal is detected, and master transmits repeated START condition. In this case, load SLA0+R/W into the USI0DR and set the STARTC0 bit in USI0CR4.

After doing one of the actions above, write arbitrary value to USI0ST2 to release SCL0 line. In case of 1) and 2), move to step 7. In case of 3), move to step 9 to handle STOP interrupt. In case of 4), move to step 6 after transmitting the data in USI0DR, and if transfer direction bit is '0' go to master transmitter section.



9. This is the final step for master receiver function of I2C, handling STOP interrupt. The STOP bit indicates that data transfer between master and slave is over. To clear USI0ST2, write any value to USI0ST2. After this, I2C enters idle state.

The processes described above for master receiver operation of I2C can be depicted as the following figure.

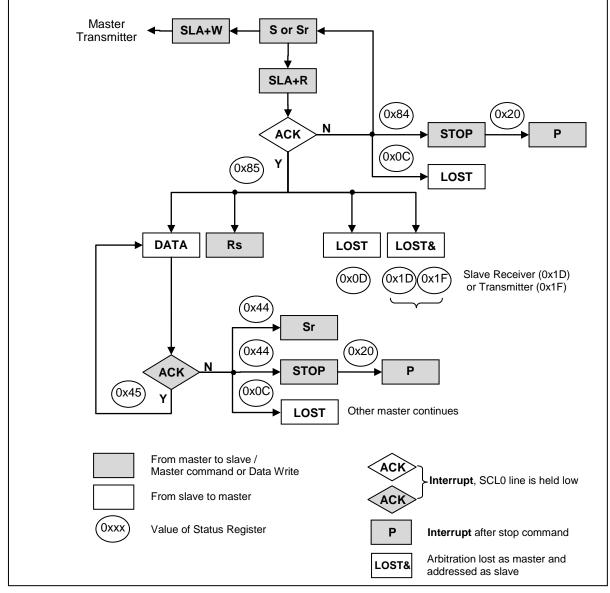
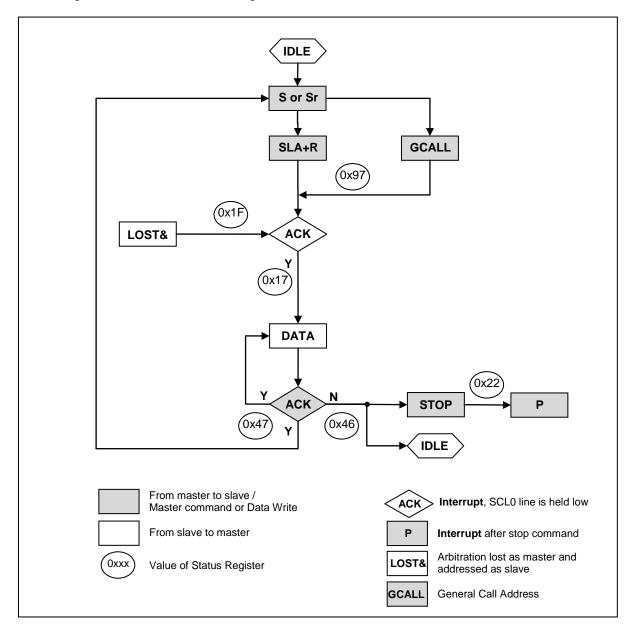



Figure 11.74 Formats and States in the Master Receiver Mode (USI0)



# 11.12.20.3 USI0 I2C Slave Transmitter

To operate I2C in slave transmitter, follow the recommended steps below.


- 1. If the main operating clock (SCLK) of the system is slower than that of SCL0, load value 0x00 into USI0SDHR to make SDA0 change within one system clock period from the falling edge of SCL0. Note that the hold time of SDA0 is calculated by SDAH x period of SCLK where SDAH is multiple of number of SCLK coming from USI0SDHR. When the hold time of SDA0 is longer than the period of SCLK, I2C (slave) cannot transmit serial data properly.
- 2. Enable I2C by setting USI0MS[1:0] bits in USI0CR1 , IIC0IE bit in USI0CR4 and USI0EN bit in USI0CR2. This provides main clock to the peripheral.
- 3. When a START condition is detected, I2C receives one byte of data and compares it with USI0SLA[6:0] bits in USI0SAR. If the GCALL0 bit in USI0SAR is enabled, I2C compares the received data with value 0x00, the general call address.
- 4. If the received address does not equal to USI0SLA[6:0] bits in USI0SAR, I2C enters idle state ie, waits for another START condition. Else if the address equals to USI0SLA[6:0] bits and the ACK0EN bit is enabled, I2C generates SSEL0 interrupt and the SCL0 line is held LOW. Note that even if the address equals to USI0SLA[6:0] bits, when the ACK0EN bit is disabled, I2C enters idle state. When SSEL0 interrupt occurs, load transmit data to USI0DR and write arbitrary value to USI0ST2 to release SCL0 line.
- 5. 1-Byte of data is being transmitted.
- 6. In this step, I2C generates TEND0 interrupt and holds the SCL0 line LOW regardless of the reception of ACK signal from master. Slave can select one of the following cases.

No ACK signal is detected and I2C waits STOP or repeated START condition.
 ACK signal from master is detected. Load data to transmit into USI0DR.

After doing one of the actions above, write arbitrary value to USI0ST2 to release SCL0 line. In case of 1) move to step 7 to terminate communication. In case of 2) move to step 5. In either case, a repeated START condition can be detected. For that case, move step 4.

7. This is the final step for slave transmitter function of I2C, handling STOP interrupt. The STOPC0 bit indicates that data transfer between master and slave is over. To clear USI0ST2, write any value to USI0ST2. After this, I2C enters idle state.





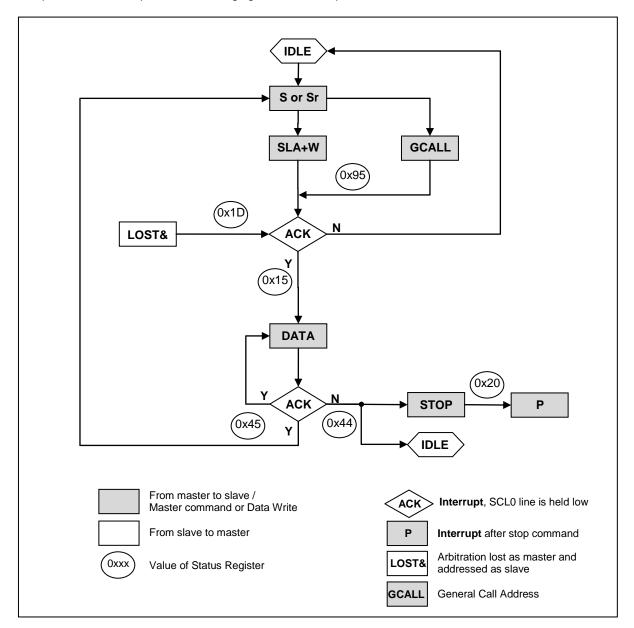
The next figure shows flow chart for handling slave transmitter function of I2C.

Figure 11.75 Formats and States in the Slave Transmitter Mode (USI0)



# 11.12.20.4 USI0 I2C Slave Receiver

To operate I2C in slave receiver, follow the recommended steps below.


- 1. If the main operating clock (SCLK) of the system is slower than that of SCL0, load value 0x00 into USI0SDHR to make SDA0 change within one system clock period from the falling edge of SCL0. Note that the hold time of SDA0 is calculated by SDAH x period of SCLK where SDAH is multiple of number of SCLK coming from USI0SDHR. When the hold time of SDA0 is longer than the period of SCLK, I2C (slave) cannot transmit serial data properly.
- 2. Enable I2C by setting USI0MS[1:0] bits in USI0CR1, IIC0IE bit in USI0CR4 and USI0EN bit in USI0CR2. This provides main clock to the peripheral.
- 3. When a START condition is detected, I2C receives one byte of data and compares it with USI0SLA[6:0] bits in USI0SAR. If the GCALL0 bit in USI0SAR is enabled, I2C0 compares the received data with value 0x00, the general call address.
- 4. If the received address does not equal to SLA0bits in USI0SAR, I2C enters idle state ie, waits for another START condition. Else if the address equals to SLA0 bits and the ACK0EN bit is enabled, I2C generates SSEL0 interrupt and the SCL0 line is held LOW. Note that even if the address equals to SLA0 bits, when the ACK0EN bit is disabled, I2C enters idle state. When SSEL0 interrupt occurs and I2C is ready to receive data, write arbitrary value to USI0ST2 to release SCL0 line.
- 5. 1-Byte of data is being received.
- 6. In this step, I2C generates TEND0 interrupt and holds the SCL0 line LOW regardless of the reception of ACK signal from master. Slave can select one of the following cases.

No ACK signal is detected (ACK0EN=0) and I2C waits STOP or repeated START condition.
 ACK signal is detected (ACK0EN=1) and I2C can continue to receive data from master.

After doing one of the actions above, write arbitrary value to USI0ST2 to release SCL0 line. In case of 1) move to step 7 to terminate communication. In case of 2) move to step 5. In either case, a repeated START condition can be detected. For that case, move step 4.

7. This is the final step for slave receiver function of I2C, handling STOP interrupt. The STOPC0 bit indicates that data transfer between master and slave is over. To clear USI0ST2, write any value to USI0ST2. After this, I2C enters idle state.





The process can be depicted as following figure when I2C operates in slave receiver mode.

Figure 11.76 Formats and States in the Slave Receiver Mode (USI0)



# 11.12.21 USI0 I2C Block Diagram

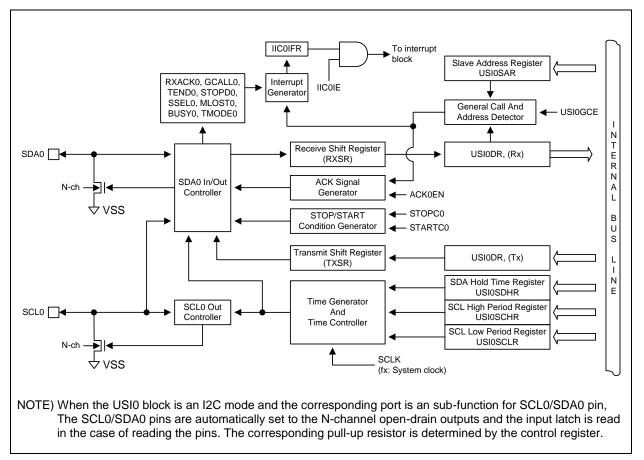



Figure 11.77 USI0 I2C Block Diagram

# 11.12.22 Register Map

Name	Address	Dir	Default	Description
USI0BD	E3H	R/W	FFH	USI0 Baud Rate Generation Register
USI0DR	E5H	R/W	00H	USI0 Data Register
USI0SDHR	E4H	R/W	01H	USI0 SDA Hold Time Register
USI0SCHR	E7H	R/W	3FH	USI0 SCL High Period Register
USI0SCLR	E6H	R/W	3FH	USI0 SCL Low Period Register
USI0SAR	DDH	R/W	00H	USI0 Slave Address Register
USI0CR1	D9H	R/W	00H	USI0 Control Register 1
USI0CR2	DAH	R/W	00H	USI0 Control Register 2
USI0CR3	DBH	R/W	00H	USI0 Control Register 3
USI0CR4	DCH	R/W	00H	USI0 Control Register 4
USI0ST1	E1H	R/W	80H	USI0 Status Register 1
USI0ST2	E2H	R	00H	USI0 Status Register 2

#### Table 11-21 USI0 Register Map

# 11.12.23 USI0 Register Description

USI0 module consists of USI0 baud rate generation register (USI0BD), USI0 data register (USI0DR), USI0 SDA hold time register (USI0SDHR), USI0 SCL high period register (USI0SCHR), USI0 SCL low period Register (USI0SCLR), USI0 slave address register (USI0SAR), USI0 control register 1/2/3/4 (USI0CR1/2/3/4), USI0 status register 1/2 (USI0ST1/2).

# 11.12.24 Register Description for USI0

7	6	5	4	3	2	1	0
USI0BD7	USI0BD6	USI0BD5	USI0BD4	USI0BD3	USI0BD2	USI0BD1	USI0BD 0
RW	RW	RW	RW	RW	RW	RW	RW
						l	nitial value : FF
USI0BD[7:0]			asynchronou prevent malf	this register i us mode or to function, do no	generate SC ot write '0' in a	K0 clock in S	PI mode. To

#### USI0BD (USI0 Baud- Rate Generation Register: For UART and SPI mode) : E3H

not write '0' or '1' in SPI mode.

NOTE) In common with USI0SAR register, USI0BD register is used for slave address register when the USI0 I2C mode.



7	6	5	4	3	2	1	0	
USI0DR7	USIODR6	USI0DR5	USIODR4	USIODR 3	USI0DR2	USI0DR 1	USI0DR0	
RW	RW	RW	RW	RW	RW	RW	RW	
						I	nitial value : 0	он

USIODR[7:0] The USI0 transmit buffer and receive buffer share the same I/O address with this DATA register. The transmit data buffer is the destination for data written to the USI0DR register. Reading the USI0DR register returns the contents of the receive buffer. Write to this register only when the DRE0 flag is set. In SPI master mode, the SCK clock is generated when data are written to this register.

#### USI0SDHR (USI0 SDA Hold Time Register: For I2C mode) : E4H

USI0DR (USI0 Data Register: For UART, SPI, and I2C mode) : E5H

7	6	5	4	3	2	1	0
USI0SDHR7	USI0SDHR6	USI0SDHR5	USIOSDHR4	USIOSDHR3	USIOSDHR2	USIOSDHR 1	USIOSDHR0
RW	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : 0
	1161	0000017-01	The register	ic used to cou	atrol SDA0 ou	tout timing fro	m the folling

USI0SDHR[7:0] The register is used to control SDA0 output timing from the falling edge of SCI in I2C mode.
NOTE) That SDA0 is changed after t_{SCLK} X (USI0SDHR+2), in master SDA 0 change in the middle of SCL0.
In slave mode, configure this register regarding the frequency of SCL0 from master.
The SDA0 is changed after tsclk X (USI0SDHR+2) in master mode. So, to insure operation in slave mode, the value

 $t_{SCLK} X$  (USI0SDHR +2) must be smaller than the period of SCL.

#### USI0SCHR (USI0 SCL High Period Register: For I2C mode) : E7H

7	6	5	4	3	2	1	0
USI0SCHR7	USI0SCHR6	USI0SCHR5	USIOSCHR4	USIOSCHR3	USIOSCHR2	USIOSCHR 1	USIOSCHR0
RW	RW						
						I	nitial value : 00

USI0SCHR[7:0] This register defines the high period of SCL0 when it operates in I2C master mode. The base clock is SCLK, the system clock, and the period is calculated by the formula: t_{SCLK} X (4 X USI0SCHR +2) where t_{SCLK} is the period of SCLK.

#### So, the operating frequency of I2C master mode is calculated by the following equation.

$$f_{I2C} = \frac{1}{t_{SCLK} X (4 X (USI0SCLR + USI0SCHR + 4))}$$



•		•		,			
7	6	5	4	3	2	1	0
USI0SCLR7	USI0SCLR6	USI0SCLR5	USI0SCLR4	USIOSCLR 3	USI0SCLR2	USI0SCLR1	USIOSCLR 0
RW	RW	RW	RW	RW	RW	RW	RW

#### USI0SCLR (USI0 SCL Low Period Register: For I2C mode) : E6H

Initial value : 00H

USIOSCLR[7:0] This register defines the high period of SCL0 when it operates in I2C master mode.

The base clock is SCLK, the system clock, and the period is calculated by the formula:  $t_{SCLK} X$  (4 X USI0SCLR +2) where  $t_{SCLK}$  is the period of SCLK.

### USI0SAR (USI0 Slave Address Register: For I2C mode) : DDH

7	6	5	4	3	2	1	0			
USIOSLA6	USIOSLA5	USIOSLA4	USI0SLA3	USIOSLA2	USIOSLA1	USIOSLAO	USIOGCE			
RW	RW	RW	RW	RW	RW	RW	RW			
Initial value :										
USI0SLA[6:0]			These bits of 12C slave mo	0	ave address	of I2C when	it operaties in			
	UPM[1:0]			This bit decides whether I2C allows general call address or not in I2C slave mode.						
				Ignore general call address						
			1 Allo	Allow general call address						



7	6	5	4	3		2	1	0	
USIOMS1	USIOMSO	USIOPM1	USIOPM	D USIOS	22	USI0S1 ORD0	USIOSO CPHAO	CPOL0	
RW	RW	RW	RW	R/W	1	RW	RW	RW	
							I	nitial value : 0	
	USI	0MS[1:0]	-	eration mode	e of US	510			
			USI0MS1	USI0MS0		ration mode			
			0	0	-	nchronous M			
			0	1	Synchronous Mode				
			1	0		mode			
			1	1		mode			
	USI	0PM[1:0]	-				ods (only UAF	RT mode)	
			USI0PM1	USI0PM0	Parit	•			
			0	0		Parity			
			0	1		erved			
			1	0		n Parity			
			1	1		Parity			
	USI	0S[2:0]		-	-		ode of operati	on,	
				length of da					
			USI0S2	USI0S1	USI		_ength		
			0	0	0	5 bit			
			0	0	1	6 bit			
			0	1	0	7 bit			
			0	1	1	8 bit			
			1	0	0	Reser			
			1	0	1	Reser			
			1	1	0	Reser	ved		
			1	1	1	9 bit		-	
	OR	D0		nsmitted firs			IOS1. The MS and the LSB v		
			0	LSB-first					
			1	MSB-first					
	CPO	OL0	This bit de mode.	termines the	e clock	c polarity of	ACK in synch	ronous or SP	
			0	TXD chang	ge@Ri	ising Edge, F	RXD change@	Falling Edge	
			1	TXD chang	ge@Fa	alling Edge, I	RXD change@	Rising Edge	
	CPI	HA0	This bit is in the same bit position with USI0S0. This bit deter data are sampled on the leading or trailing edge of SCK0 (or mode).						
			CPOL0	CPHA0	Lead	ding edge	Trailing	edge	
			0	0		ple (Rising)	Setup (	-	
			0	1		ıp (Rising)		(Falling)	
			1	0		ple (Falling)	-		
				•				r (ioning)	



7	6	5	4	3	2	1	0		
DRIE0	TXCIE0	RXCIE0	WAKEIE0	TXE0	RXE0	USIOEN	DBLS0		
RW	RW	RW	RW	RW	RW	RW	RW		
						I	nitial value : 00		
	DR	IE0	Interrupt enable	e bit for data re	egister empty	(only UART a	nd SPI mode).		
			0 Interru	pt from DRE0	is inhibited (u	se polling)			
			1 When	DRE0 is set, r	equest an inte	errupt			
	тхо	CIEO	Interrupt enable	e bit for transm	nit complete (o	only UART and	d SPI mode).		
			0 Interru	pt from TXC0	is inhibited (u	se polling)			
			1 When TXC0 is set, request an interrupt						
	RX	CIE0	Interrupt enable	e bit for receiv	e complete (o	nly UART and	SPI mode).		
			0 Interru	pt from RXC0	is inhibited (u	se polling)			
			1 When	RXC0 is set, r	equest an inte	errupt			
	WA	KEIE0	Interrupt enable bit for asynchronous wake in STOP mode. When device is in stop mode, if RXD0 goes to low level an interrupt can be requested to wake-up system. (only UART mode). At that time the DRIE0 bit and USI0ST1 register value should be set to '0b' and "00H", respectively.						
			0 Interru	pt from Wake	is inhibited				
			1 When	WAKE0 is set	, request an ir	nterrupt			
	TXE	Ξ0	Enables the tra	insmitter unit (	only UART ar	nd SPI mode).			
			0 Transr	hitter is disabled					
			1 Transr	nitter is enable	ed				
	RXI	E0	Enables the red	ceiver unit (on	ly UART and	SPI mode).			
			0 Receiv	ver is disabled					
			1 Receiv	ver is enabled					
	USI	0EN	Activate USI0 f	ctivate USI0 function block by supplying.					
				s disabled					
			1 USI0 is	s enabled					
	DB	LS0	This bit selects	receiver sample	oling rate (only	y UART).			
			0 Norma	ll asynchronou	is operation				
			1 Double	e Speed async	hronous oper	ation			

# USI0CR2 (USI0 Control Register 2: For UART, SPI, and I2C mode) : DAH



7	6	5	4	3	2	1	0
MASTER0	LOOPS0	DISSCK0	<b>USIOSSEN</b>	FXCH0	USIOSB	USI0TX8	USIORX8
RW	RW	RW	RW	RW	RW	RW	RW
						I	nitial value : 00
	MA	STER0	Selects maste controls the direction			hronous mod	e operation a
			0 Slave	mode operatio	n (External cl	ock for SCK0)	
			1 Maste	r mode operat	ion(Internal cl	ock for SCK0)	
	LO	OPS0	Controls the lo mode)	op back mode	of USI0 for t	est mode (onl	y UART and S
			0 Norma	al operation			
			1 Loop	Back mode			
	DIS	SCK0	In synchronou	s mode of oper	ation, selects	the waveform	of SCK0 outp
				is free-running r mode	g while UAR	T is enabled	in synchrono
			1 ACK	is active while	any frame is o	on transferring	
	US	IOSSEN	This bit contro	s the SS0 pin	operation (onl	y SPI mode)	
			0 Disab	e			
			1 Enabl	e (The SS0 pir	should be a	normal input)	
	FX	CH0	SPI port function	on exchange c	ontrol bit (only	/ SPI mode)	
			0 No eff	ect			
			1 Excha	nge MOSI0 ar	d MISO0 fund	ction	
	US	IOSB	Selects the lead operation.	ngth of stop bi	t in asynchro	nous or synch	nronous mode
			0 1 Stop	o Bit			
			1 2 Stop	o Bit			
	US	IOTX8	The ninth bit operation. Write	of data frame te this bit first b	in asynchror efore loading	ious or synch the USI0DR r	ronous mode egister
			0 MSB (	(9 th bit) to be tra	ansmitted is '(	)'	
			1 MSB (	(9 th bit) to be tra	ansmitted is '1	,	
	US	10RX8	The ninth bit operation. Rea mode).				
			0 MSB (	9 th bit) receive	d is '0'		
			1 MSB (	9 th bit) receive	d is '1'		

# USI0CR3 (USI0 Control Register 3: For UART, SPI, and I2C mode) : DBH



7	6	5	4	3	2	1	0		
ICOIFR	-	TXDLYENB0	IICOIE	ACKOEN	IMASTER0	STOPC0	STARTC0		
R	-	RW	RW	RW	R	RW	RW		
						I	nitial value : 00H		
	IIC						rrupt occurs, this in th USI0ST2.		
		(	D I2C int	errupt no gene	eration				
			1 I2C int	errupt generat	ion				
	ТХ	DLYENB0	JSI0SDHR reg	ister control b	it				
		(	) Enable	USI0SDHR r	egister				
			1 Disable	e USI0SDHR i	register				
	IIC	0IE I	nterrupt Enabl	e bit for I2C m	ode				
		(	D Interru	pt from I2C is	inhibited (use	polling)			
			1 Enable	e interrupt for la	2C				
	AC	KOEN (	Controls ACK signal Generation at ninth SCL0 period.						
		(	0 No ACK signal is generated (SDA0 =1)						
				ignal is genera		-			
			NOTES) ACK s	•	. ,	•			
			1. When receiv	•			s in USI0SAR.		
			enabled.	veu audiess j	Jackel equals		JO WIT GCALLO		
		:	3. When I2C op	perates as a re	eceiver (maste	er or slave)			
	IM	ASTER0	Represent ope	rating mode of	I2C				
		(	D I2C is	in slave mode					
			1 I2C is	in master mod	е				
	ST	OPC0	When I2C is m	aster, STOP c	ondition gene	ration			
		(	D No effe	ect					
				condition is to	0				
	ST		When I2C is ma		condition gen	eration			
		(	D No effe						
			1 STAR	F or repeated	START condit	ion is to be ge	enerated		

# USI0CR4 (USI0 Control Register 4: For I2C mode) : DCH



7	6	5	4	3	2	1	0		
DRE0	TXC0	RXC0	WAKE0	USIORST	DOR0	FE0	PE0		
RW	RW	R	RW	RW	R	RW	RW		
						li	nitial value : 80H		
	DR	E0		ata. If DRE0 i	s '1', the buf	fer is empty a	DR) is ready to and ready to be		
			0 Transm	nit buffer is not	empty.				
			1 Transmit buffer is empty.						
	тхо	C0	This flag is set when the entire frame in the transmit shift register has been shifted out and there is no new data currently present in the transmit buffer. This flag is automatically cleared when the interrup service routine of a TXC0 interrupt is executed. This flag can generate a TXC0 interrupt. This bit is automatically cleared.						
			0 Transn	nission is ongo	ping.				
				nit buffer is er fted out compl		data in trans	mit shift register		
	RX	C0	cleared when a	all the data in	the receive b	uffer are read.	ceive buffer and The RXC0 flag is automatically		
			0 There	is no data unre	ead in the rec	eive buffer			
			1 There	are more than	1 data in the	receive buffer			
	WA	KE0	This flag is set when the RXD0 pin is detected low while the CPU is in STOP mode. This flag can be used to generate a WAKE0 interrupt. This bit is set only when in asynchronous mode of operation. This bit should be cleared by program software. (only UART mode)						
			0 No WA	KE interrupt is	generated.				
			1 WAKE	interrupt is ge	nerated				
	US	IORST	This is an internal reset and only has effect on USI0. Writing '1' to this bit initializes the internal logic of USI0 and this bit is automatically cleared to '0'.						
			0 No ope	eration					
			1 Reset	USI0					
	DO	R0	This bit is set if incoming data is read.				set, the ne receive buffer		
			0 No Dat	a OverRun					
			1 Data C	verRun detect	ed				
	FEC	)					receive buffer is er is read. (only		
			0 No Fra	me Error					
			1 Frame	Error detected	1				
	PE			while Parity C	hecking is en		as a Parity Error is valid until the		
			0 No Pai	ity Error					
			1 Parity	Error detected					

# USI0ST1 (USI0 Status Register 1: For UART and SPI mode) : E1H



7	6	5	4	3	2	1	0			
GCALL0	TEND0	STOPD0	SSEL0	MLOST0	BUSY0	TMODE0	RXACK0			
R	RW	RW	RW	RW	RW	RW	RW			
						l	nitial value : 00H			
	GC.	ALL0 ^(NOTE)	This bit has different meaning depending on whether I2C is master or slave. When I2C is a master, this bit represents whether it received AACK (address ACK) from slave.							
			0 No AACK is received (Master mode)							
			1 AACK	is received (N	laster mode)					
			When I2C is a s	slave, this bit i	s used to indi	cated general	call.			
			0 Genera	al call address	is not detecte	ed (Slave mod	le)			
			1 Genera	al call address	is detected (S	Slave mode)				
	TEN	ND0 ^(NOTE)	This bit is set w	hen 1-byte of	data is transfe	erred complete	ely			
			0 1 byte	of data is not	completely tra	insferred				
			1 1 byte of data is completely transferred							
	STO	OPD0 ^(NOTE)	This bit is set when a STOP condition is detected.							
			0 No ST	OP condition i	s detected					
			1 STOP	condition is d	etected					
	SSE	ELO ^(NOTE)	This bit is set when I2C is addressed by other master.							
			0 I2C is	not selected a	s a slave					
			1 I2C is a	addressed by	other master a	and acts as a	slave			
	ML	OST0 ^(NOTE)	This bit represe	ents the result	of bus arbitrat	tion in master	mode.			
			0 I2C ma	aintains bus m	astership					
			1 I2C ma	aintains bus m	astership duri	ng arbitration	process			
	BU	SY0	This bit reflects	bus status.						
			0 I2C bu	s is idle, so a	master can is	sue a START	condition			
			1 I2C bu	s is busy						
	TM	ODE0	This bit is used	to indicate wh	ether I2C is the	ransmitter or r	eceiver.			
			0 I2C is a	a receiver						
			1 I2C is a	a transmitter						
	RX	ACK0	This bit shows	the state of AC	CK signal					
			0 No AC	K is received						
			1 ACK is	received at n	inth SCL perio	bd				

### USI0ST2 (USI0 Status Register 2: For I2C mode) : E2H

NOTE) These bits can be source of interrupt.

When an I2C interrupt occurs except for STOP mode, the SCL0 line is hold LOW. To release SCL0, write rbitrary value to USI0ST2. When USI0ST2 is written, the TEND0, STOPD0, SSEL0, MLOST0, and RXACK0 bits are cleared.



# 11.13 USI1 (UART + SPI + I2C)

### 11.13.1 Overview

The USI1 consists of USI1 control register1/2/3/4, USI1 status register 1/2, USI1 baud-rate generation register, USI1 data register, USI1 SDA hold time register, USI1 SCL high period register, USI1 SCL low period register, and USI1 slave address register (USI1CR1, USI1CR2, USI1CR3, USI1CR4, USI1ST1, USI1ST2, USI1BD, USI1DR, USI1SDHR, USI1SCHR, USI1SCLR, USI1SAR).

The operation mode is selected by the operation mode of USI1 selection bits (USI1MS[1:0]).

It has four operating modes:

- Asynchronous mode (UART)
- Synchronous mode
- SPI mode
- I2C mode

# 11.13.2 USI1 UART Mode

The universal synchronous and asynchronous serial receiver and transmitter (UART) is a highly flexible serial communication device. The main features are listed below.

- Full Duplex Operation (Independent Serial Receive and Transmit Registers)
- Asynchronous or Synchronous Operation
- Baud Rate Generator
- Supports Serial Frames with 5,6,7,8, or 9 Data Bits and 1 or 2 Stop Bits
- Odd or Even Parity Generation and Parity Check Supported by Hardware
- Data OverRun Detection
- Framing Error Detection
- Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
- Double Speed Asynchronous communication mode

USI1 has three main parts of clock generator, Transmitter and receiver. The clock generation logic consists of synchronization logic for external clock inut used by synchronous or SPI slave operation, and the baud rate generator for asynchronous or master (synchronous or SPI) operation.

The Transmitter consists of a single write buffer, a serial shift register, parity generator and control logic for handling different serial frame formats. The write buffer allows continuous transfer of data without any delay between frames. The receiver is the most complex part of the UART module due to its clock and data recovery units. The recovery unit is used for asynchronous data reception. In addition to the recovery unit, the receiver includes a parity checker, a shift register, a two-level receive FIFO (USI1DR) and control logic. The receiver supports the same frame formats as the transmitter and can detect frame error, data overrun and parity errors.



# 11.13.3 USI1 UART Block Diagram

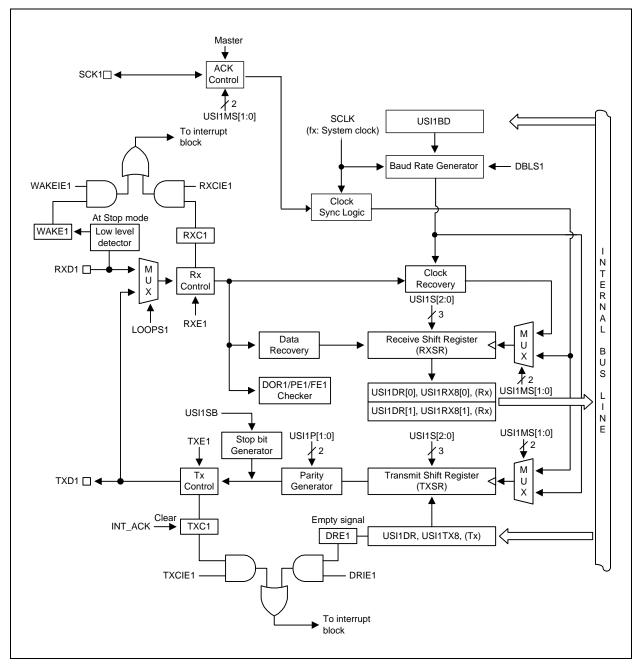
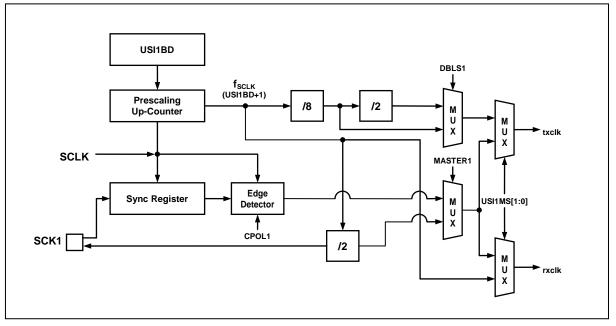




Figure 11.78 USI1 UART Block Diagram

# 11.13.4 USI1 Clock Generation



### Figure 11.79 Clock Generation Block Diagram (USI1)

The clock generation logic generates the base clock for the transmitter and receiver. The USI1 supports four modes of clock operation and those are normal asynchronous, double speed asynchronous, master synchronous and slave synchronous mode. The clock generation scheme for master SPI and slave SPI mode is the same as master synchronous and slave synchronous operation mode. The USI1MS[1:0] bits in USI1CR1 register selects asynchronous or synchronous operation. Asynchronous double speed mode is controlled by the DBLS1 bit in the USI1CR2 register. The MASTER1 bit in USI1CR3 register controls whether the clock source is internal (master mode, output pin) or external (slave mode, input pin). The SCK1 pin is active only when the USI1 operates in synchronous or SPI mode.

Following table shows the equations for calculating the baud rate (in bps).

Table 11-22 Equations for Calculating	USI1 Baud Rate Register Setting
---------------------------------------	---------------------------------

Operating Mode	Equation for Calculating Baud Rate
Asynchronous Normal Mode (DBLS1=0)	Baud Rate = $\frac{fx}{16(USI1BD + 1)}$
Asynchronous Double Speed Mode (DBLS1=1)	Baud Rate = $\frac{fx}{8(USI1BD + 1)}$
Synchronous or SPI Master Mode	Baud Rate = $\frac{fx}{2(USI1BD + 1)}$



# 11.13.5 USI1 External Clock (SCK1)

External clocking is used in the synchronous mode of operation.

External clock input from the SCK1 pin is sampled by a synchronization logic to remove meta-stability. The output from the synchronization logic must be passed through an edge detector before it is used by the transmitter and receiver. This process introduces two CPU clock period delay. The maximum frequency of the external SCK1 pin is limited up-to 1MHz.

# 11.13.6 USI1 Synchronous mode operation

When synchronous or SPI mode is used, the SCK1 pin will be used as either clock input (slave) or clock output (master). Data sampling and transmitter is issued on the different edge of SCK1 clock each other. For example, if data input on RXD1 (MISO1 in SPI mode) pin is sampled on the rising edge of SCK1 clock, data output on TXD1 (MOSI1 in SPI mode) pin is altered on the falling edge.

The CPOL1 bit in USI1CR1 register selects which SCK1 clock edge is used for data sampling and which is used for data change. As shown in the figure below, when CPOL1 is zero, the data will be changed at rising SCK1 edge and sampled at falling SCK1 edge.

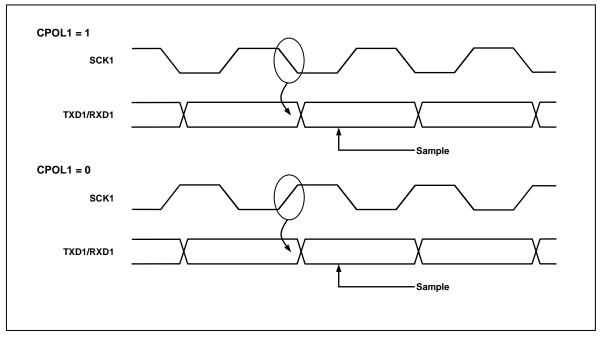



Figure 11.80 Synchronous Mode SCK1 Timing (USI1)



# 11.13.7 USI1 UART Data format

A serial frame is defined to be one character of data bits with synchronization bits (start and stop bits), and optionally a parity bit for error detection.

The UART supports all 30 combinations of the following as valid frame formats.

- 1 start bit
- 5, 6, 7, 8 or 9 data bits
- no, even or odd parity bit
- 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit (LSB). Then the next data bits, up to nine, are succeeding, ending with the most significant bit (MSB). If parity function is enabled, the parity bit is inserted between the last data bit and the stop bit. A high-to-low transition on data pin is considered as start bit. When a complete frame is transmitted, it can be directly followed by a new frame, or the communication line can be set to an idle state. The idle means high state of data pin. The following figure shows the possible combinations of the frame formats. Bits inside brackets are optional.

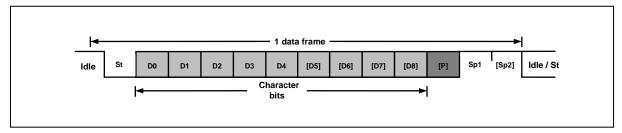



Figure 11.81 Frame Format (USI1)

1 data frame consists of the following bits

- Idle No communication on communication line (TXD0/RXD0)
- St Start bit (Low)
- Dn Data bits (0~8)
- Parity bit ----- Even parity, Odd parity, No parity
- Stop bit(s) ----- 1 bit or 2 bits

The frame format used by the UART is set by the USI1S[2:0], USI1PM[1:0] bits in USI1CR1 register and USI1SB bit in USI1CR3 register. The Transmitter and Receiver use the same setting.

### 11.13.8 USI1 UART Parity bit

The parity bit is calculated by doing an exclusive-OR of all the data bits. If odd parity is used, the result of the exclusive-O is inverted. The parity bit is located between the MSB and first stop bit of a serial frame.

$$\begin{split} \mathsf{P}_{\mathsf{even}} &= \mathsf{D}_{\mathsf{n}-1} \wedge \dots \wedge \mathsf{D}_3 \wedge \mathsf{D}_2 \wedge \mathsf{D}_1 \wedge \mathsf{D}_0 \wedge \mathsf{0} \\ \mathsf{P}_{\mathsf{odd}} &= \mathsf{D}_{\mathsf{n}-1} \wedge \dots \wedge \mathsf{D}_3 \wedge \mathsf{D}_2 \wedge \mathsf{D}_1 \wedge \mathsf{D}_0 \wedge \mathsf{1} \\ \mathsf{P}_{\mathsf{even}} &: \mathsf{Parity} \text{ bit using even parity} \\ \mathsf{P}_{\mathsf{odd}} &: \mathsf{Parity} \text{ bit using odd parity} \\ \mathsf{D}_{\mathsf{n}} &: \mathsf{Data} \text{ bit n of the character} \end{split}$$



## 11.13.9 USI1 UART Transmitter

The UART transmitter is enabled by setting the TXE1 bit in USI1CR2 register. When the Transmitter is enabled, the TXD1 pin should be set to TXD1 function for the serial output pin of UART by the P2FSR[1:0]. The baud-rate, operation mode and frame format must be setup once before doing any transmission. In synchronous operation mode, the SCK1 pin is used as transmission clock, so it should be selected to do SCK1 function by P2FSR[3:2].

### 11.13.9.1 USI1 UART Sending Tx data

A data transmission is initiated by loading the transmit buffer (USI1DR register I/O location) with the data to be transmitted. The data written in transmit buffer is moved to the shift register when the shift register is ready to send a new frame. The shift register is loaded with the new data if it is in idle state or immediately after the last stop bit of the previous frame is transmitted. When the shift register is loaded with new data, it will transfer one complete frame according to the settings of control registers. If the 9-bit characters are used in asynchronous or synchronous operation mode, the ninth bit must be written to the USI1TX8 bit in USI1CR3 register before it is loaded to the transmit buffer (USI1DR register).

## 11.13.9.2 USI1 UART Transmitter flag and interrupt

The UART transmitter has 2 flags which indicate its state. One is UART data register empty flag (DRE1) and the other is transmit complete flag (TXC1). Both flags can be interrupt sources.

DRE1 flag indicates whether the transmit buffer is ready to receive new data. This bit is set when the transmit buffer is empty and cleared when the transmit buffer contains data to be transmitted but has not yet been moved into the shift register. And also this flag can be cleared by writing '0' to this bit position. Writing '1' to this bit position is prevented.

When the data register empty interrupt enable (DRIE1) bit in USI1CR2 register is set and the global interrupt is enabled, USI1ST1 status register empty interrupt is generated while DRE1 flag is set.

The transmit complete (TXC1) flag bit is set when the entire frame in the transmit shift register has been shifted out and there is no more data in the transmit buffer. The TXC1 flag is automatically cleared when the transmit complete interrupt service routine is executed, or it can be cleared by writing '0' to TXC1 bit in USI1ST1 register.

When the transmit complete interrupt enable (TXCIE1) bit in USI1CR2 register is set and the global interrupt is enabled, UART transmit complete interrupt is generated while TXC1 flag is set.



## 11.13.9.3 USI1 UART Parity Generator

The parity generator calculates the parity bit for the serial frame data to be sent. When parity bit is enabled (USI1PM1=1), the transmitter control logic inserts the parity bit between the MSB and the first stop bit of the frame to be sent.

## 11.13.9.4 USI1 UART Disabling Transmitter

Disabling the transmitter by clearing the TXE1 bit will not become effective until ongoing transmission is completed. When the Transmitter is disabled, the TXD1 pin can be used as a normal general purpose I/O (GPIO).

### 11.13.10 USI1 UART Receiver

The UART receiver is enabled by setting the RXE1 bit in the USI1CR2 register. When the receiver is enabled, the RXD1 pin should be set to RXD1 function for the serial input pin of UART by P1FSR[1:0]. The baud-rate, mode of operation and frame format must be set before serial reception. In synchronous or SPI operation mode the SCK1 pin is used as transfer clock, so it should be selected to do SCK1 function by P2FSR[3:2]. In SPI operation mode the SS1 input pin in slave mode or can be configured as SS1 output pin in master mode. This can be done by setting USI1SSEN bit in USI1CR3 register.

### 11.13.10.1 USI1 UART Receiving Rx data

When UART is in synchronous or asynchronous operation mode, the receiver starts data reception when it detects a valid start bit (LOW) on RXD1 pin. Each bit after start bit is sampled at pre-defined baud-rate (asynchronous) or sampling edge of SCK1 (synchronous), and shifted into the receive shift register until the first stop bit of a frame is received. Even if there's 2nd stop bit in the frame, the 2nd stop bit is ignored by the receiver. That is, receiving the first stop bit means that a complete serial frame is present in the receiver shift register and contents of the shift register are to be moved into the receive buffer. The receive buffer is read by reading the USI1DR register.

If 9-bit characters are used (USI1S[2:0] = "111"), the ninth bit is stored in the USI1RX8 bit position in the USI1CR3 register. The 9th bit must be read from the USI1RX8 bit before reading the low 8 bits from the USI1DR register. Likewise, the error flags FE1, DOR1, PE1 must be read before reading the data from USI1DR register. It's because the error flags are stored in the same FIFO position of the receive buffer.



# 11.13.10.2 USI1 UART Receiver Flag and Interrupt

The UART receiver has one flag that indicates the receiver state.

The receive complete (RXC1) flag indicates whether there are unread data in the receive buffer. This flag is set when there are unread data in the receive buffer and cleared when the receive buffer is empty. If the receiver is disabled (RXE1=1), the receiver buffer is flushed and the RXC1 flag is cleared.

When the receive complete interrupt enable (RXCIE1) bit in the USI1CR2 register is set and global interrupt is enabled, the UART receiver complete interrupt is generated while RXC1 flag is set.

The UART receiver has three error flags which are frame error (FE1), data overrun (DOR1) and parity error (PE1). These error flags can be read from the USI1ST1 register. As received data are stored in the 2-level receive buffer, these error flags are also stored in the same position of receive buffer. So, before reading received data from USI1DR register, read the USI1ST1 register first which contains error flags.

The frame error (FE1) flag indicates the state of the first stop bit. The FE1 flag is '0' when the stop bit was correctly detected as "1", and the FE1 flag is "1" when the stop bit was incorrect, i.e. detected as "0". This flag can be used for detecting out-of-sync conditions between data frames.

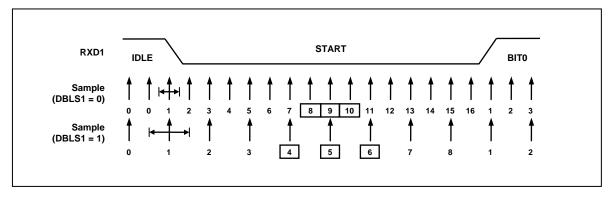
The data overrun (DOR1) flag indicates data loss due to a receive buffer full condition. DOR1 occurs when the receive buffer is full, and another new data is present in the receive shift register which are to be stored into the receive buffer. After the DOR1 flag is set, all the incoming data are lost. To prevent data loss or clear this flag, read the receive buffer.

The parity error (PE1) flag indicates that the frame in the receive buffer had a parity error when received. If parity check function is not enabled (USI1PM1=0), the PE bit is always read "0".

### 11.13.10.3 USI1 UART Parity Checker

If parity bit is enabled (USI1PM1=1), the Parity Checker calculates the parity of the data bits in incoming frame and compares the result with the parity bit from the received serial frame.

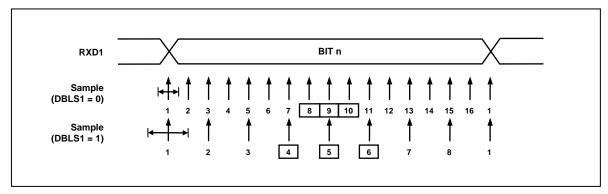
### 11.13.10.4 USI1 UART Disabling Receiver


In contrast to transmitter, disabling the Receiver by clearing RXE1 bit makes the Receiver inactive immediately. When the receiver is disabled, the receiver flushes the receive buffer, the remaining data in the buffer is all reset, and the RXD1 pin can be used as a normal general purpose I/O (GPIO).

# 11.13.10.5 USI1 Asynchronous Data Reception

To receive asynchronous data frame, the UART includes a clock and data recovery unit. The clock recovery logic is used for synchronizing the internally generated baud-rate clock to the incoming asynchronous serial frame on the RXD1 pin.

The data recovery logic samples and low pass filters the incoming bits, and this removes the noise of RXD1 pin.


The next figure illustrates the sampling process of the start bit of an incoming frame. The sampling rate is 16 times of the baud-rate in normal mode and 8 times the aud-rate for double speed mode (DBLS1=1). The horizontal arrows show the synchronization variation due to the asynchronous sampling process. Note that larger time variation is shown when using the double speed mode.



### Figure 11.82 Asynchronous Start Bit Sampling (USI1)

When the receiver is enabled (RXE1=1), the clock recovery logic tries to find a high-to-low transition on the RXD1 line, the start bit condition. After detecting high to low transition on RXD1 line, the clock recovery logic uses samples 8, 9 and 10 for normal mode to decide if a valid start bit is received. If more than 2 samples have logical low level, it is considered that a valid start bit is detected and the internally generated clock is synchronized to the incoming data frame. And the data recovery can begin. The synchronization process is repeated for each start bit.

As described above, when the receiver clock is synchronized to the start bit, the data recovery can begin. Data recovery process is almost similar to the clock recovery process. The data recovery logic samples 16 times for each incoming bits for normal mode and 8 times for double speed mode, and uses sample 8, 9 and 10 to decide data value. If more than 2 samples have low levels, the received bit is considered to a logic '0' and if more than 2 samples have high levels, the received bit is considered to a logic '1'. The data recovery process is then repeated until a complete frame is received including the first stop bit. The decided bit value is stored in the receive shift register in order. Note that the Receiver only uses the first stop bit of a frame. Internally, after receiving the first stop bit, the Receiver is in idle state and waiting to find start bit.







The process for detecting stop bit is like clock and data recovery process. That is, if 2 or more samples of 3 center values have high level, correct stop bit is detected, else a frame error (FE1) flag is set. After deciding whether the first stop bit is valid or not, the Receiver goes to idle state and monitors the RXD1 line to check a valid high to low transition is detected (start bit detection).

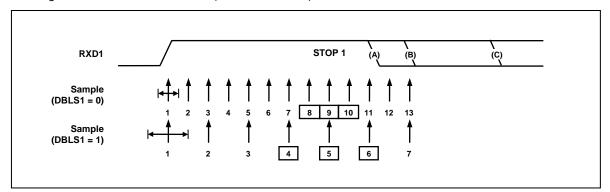



Figure 11.84 Stop Bit Sampling and Next Start Bit Sampling (USI1)



# 11.13.11 USI1 SPI Mode

The USI1 can be set to operate in industrial standard SPI compliant mode. The SPI mode has the following features.

- Full Duplex, Three-wire synchronous data transfer
- Mater and Slave Operation
- Supports all four SPI0 modes of operation (mode 0, 1, 2, and 3)
- Selectable LSB first or MSB first data transfer
- Double buffered transmit and receive
- Programmable transmit bit rate

When SPI mode is enabled (USI1MS[1:0]="11"), the slave select (SS1) pin becomes active LOW input in slave mode operation, or can be output in master mode operation if USI1SSEN bit is set to '0'.

Note that during SPI mode of operation, the pin RXD1 is renamed as MISO1 and TXD1 is renamed as MOSI1 for compatibility to other SPI devices.

### 11.13.12 USI1 SPI Clock Formats and Timing

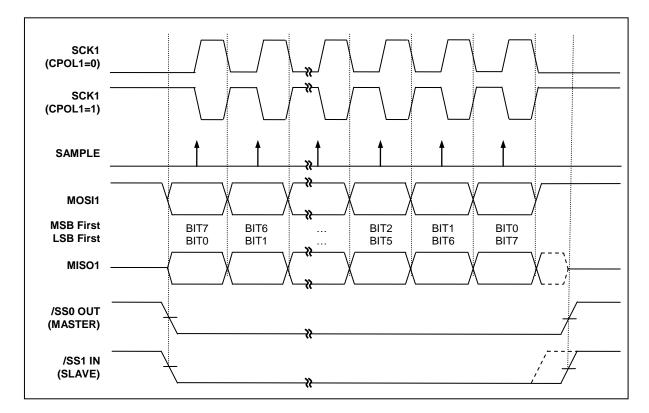
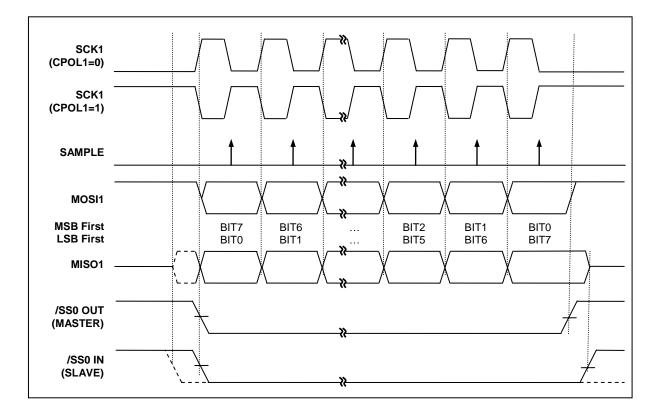

To accommodate a wide variety if synchronus serial peripherals from different manufacturers, the USI1 has a clock polarity bit (CPOL1) and a clock phase control bit (CPHA1) to select one of four clock formats for data transfers. CPOL1 selectively insert an inverter in series with the clock. CPHA1 chooses between two different clock phase relationships between the clock and data. Note that CPHA1 and CPOL1 bits in USI1CR1 register have different meanings according to the USI1MS[1:0] bits which decides the operating mode of USI1.

Table below shows four combinations of CPOL1 and CPHA1 for SPI mode 0, 1, 2, and 3.

SPI Mode	CPOL1	CPHA1	Leading Edge	Trailing Edge
0	0	0	Sample (Rising)	Setup (Falling)
1	0	1	Setup (Rising)	Sample (Falling)
2	1	0	Sample (Falling)	Setup (Rising)
3	1	1	Setup (Falling)	Sample (Rising)

#### Table 11-23 CPOL1 Functionality






### Figure 11.85 USI1 SPI Clock Formats when CPHA1=0

When CPHA1=0, the slave begins to drive its MISO1 output with the first data bit value when SS1 goes to active low. The first SCK1 edge causes both the master and the slave to sample the data bit value on their MISO1 and MOSI1 inputs, respectively. At the second SCK1 edge, the USI1 shifts the second data bit value out to the MOSI1 and MISO1 outputs of the master and slave, respectively. Unlike the case of CPHA1=1, when CPHA1=0, the slave's SS1 input must go to its inactive high level between transfers. This is because the slave can prepare the first data bit when it detects falling edge of SS1 input.





### Figure 11.86 USI1 SPI Clock Formats when CPHA1=1

When CPHA1=1, the slave begins to drive its MISO1 output when SS1 goes active low, but the data is not defined until the first SCK1 edge. The first SCK1 edge shifts the first bit of data from the shifter onto the MOSI1 output of the master and the MISO1 output of the slave. The next SCK1 edge causes both the master and slave to sample the data bit value on their MISO1 and MOSI1 inputs, respectively. At the third SCK1 edge, the USI1 shifts the second data bit value out to the MOSI1 and MISO1 output of the master and slave respectively. When CPHA1=1, the slave's SS1 input is not required to go to its inactive high level between transfers.

Because the SPI logic reuses the USI1 resources, SPI mode of operation is similar to that of synchronous or asynchronous operation. An SPI transfer is initiated by checking for the USI1 Data Register Empty flag (DRE1=1) and then writing a byte of data to the USI1DR Register. In master mode of operation, even if transmission is not enabled (TXE1=0), writing data to the USI1DR register is necessary because the clock SCK1 is generated from transmitter block.



# 11.13.13 USI1 SPI Block Diagram

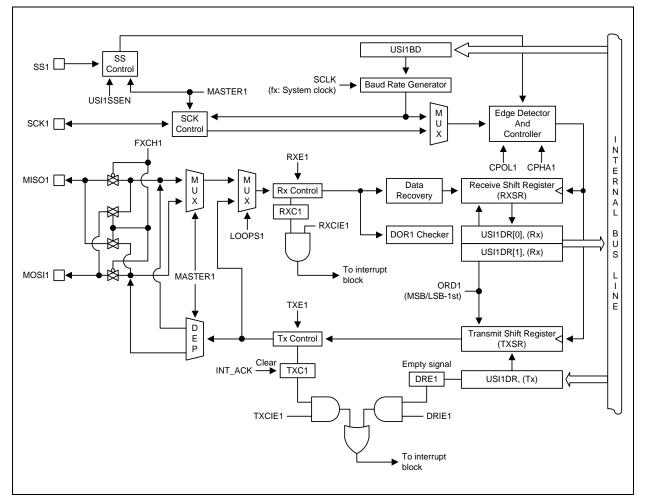



Figure 11.87 USI1 SPI Block Diagram

# 11.13.14 USI1 I2C Mode

The USI1 can be set to operate in industrial standard serial communicatin protocols mode. The I2C mode uses 2 bus lines serial data line (SDA1) and serial clock line (SCL1) to exchange data. Because both SDA1 and SCL1 lines are open-drain output, each line needs pull-up resistor. The features are as shown below.

- Compatible with I2C bus standard
- Multi-master operation
- Up to 400kHz data transfer read speed
- 7 bit address
- Both master and slave operation
- Bus busy detection

## 11.13.15 USI1 I2C Bit Transfer

The data on the SDA1 line must be stable during HIGH period of the clock, SCL1. The HIGH or LOW state of the data line can only change when the clock signal on the SCL1 line is LOW. The exceptions are START(S), repeated START(Sr) and STOP(P) condition where data line changes when clock line is high.

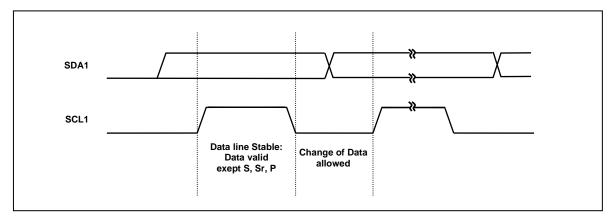




Figure 11.88 Bit Transfer on the I2C-Bus (USI1)



One master can issue a START (S) condition to notice other devices connected to the SCL1, SDA1 lines that it will use the bus. A STOP (P) condition is generated by the master to release the bus lines so that other devices can use it.

A high to low transition on the SDA1 line while SCL1 is high defines a START (S) condition.

A low to high transition on the SDA1 line while SCL1 is high defines a STOP (P) condition.

START and STOP conditions are always generated by the master. The bus is considered to be busy after START condition. The bus is considered to be free again after STOP condition, ie, the bus is busy between START and STOP condition. If a repeated START condition (Sr) is generated instead of STOP condition, the bus stays busy. So, the START and repeated START conditions are functionally identical.

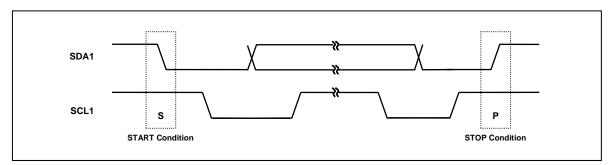



Figure 11.89 START and STOP Condition (USI1)

## 11.13.17 USI1 I2C Data Transfer

Every byte put on the SDA1 line must be 8-bits long. The number of bytes that can be transmitted per transfer is unlimited. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first. If a slave can't receive or transmit another complete byte of data until it has performed some other function, it can hold the clock line SCL1 LOW to force the master into a wait state. Data transfer then continues when the slave is ready for another byte of data and releases clock line SCL1.

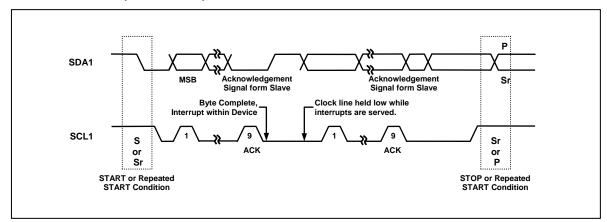



Figure 11.90 Data Transfer on the I2C-Bus (USI1)

\BO\/

# 11.13.18 USI1 I2C Acknowledge

The acknowledge related clock pulse is generated by the master. The transmitter releases the SDA1 line (HIGH) during the acknowledge clock pulse. The receiver must pull down the SDA1 line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse. When a slave is addressed by a master (Address Packet), and if it is unable to receive or transmit because it's performing some real time function, the data line must be left HIGH by the slave. And also, when a slave addressed by a master is unable to receive more data bits, the slave receiver must release the SDA1 line (Data Packet). The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.

If a master receiver is involved in a transfer, it must signal the end of data to the slave transmitter by not generating an acknowledge on the last byte that was clocked out of the slave. The slave transmitter must release the data line to allow the master to generate a STOP or repeated START condition.

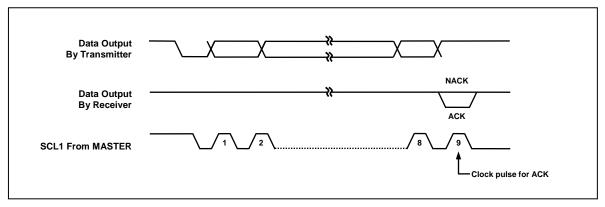



Figure 11.91 Acknowledge on the I2C-Bus (USI1)

### 11.13.19 USI1 I2C Synchronization / Arbitration

Clock synchronization is performed using the wired-AND connection of I2C interfaces to the SCL1 line. This means that a HIGH to LOW transition on the SCL1 line will cause the devices concerned to start counting off their LOW period and it will hold the SCL1 line in that state until the clock HIGH state is reached. However the LOW to HIGH transition of this clock may not change the state of the SCL1 line if another clock is still within its LOW period. In this way, a synchronized SCL1 clock is generated with its LOW period determined by the device with the longest clock LOW period, and its HIGH period determined by the one with the shortest clock HIGH period.

A master may start a transfer only if the bus is free. Two or more masters may generate a START condition. Arbitration takes place on the SDA1 line, while the SCL1 line is at the HIGH level, in such a way that the master which transmits a HIGH level, while another master is transmitting a LOW level will switch off its DATA output state because the level on the bus doesn't correspond to its own level. Arbitration continues for many bits until a winning master gets the ownership of I2C bus. Its first stage is comparison of the address bits.



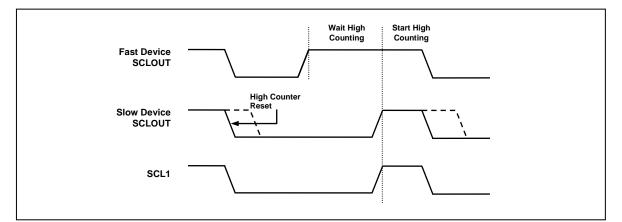



Figure 11.92 Clock Synchronization during Arbitration Procedure (USI1)

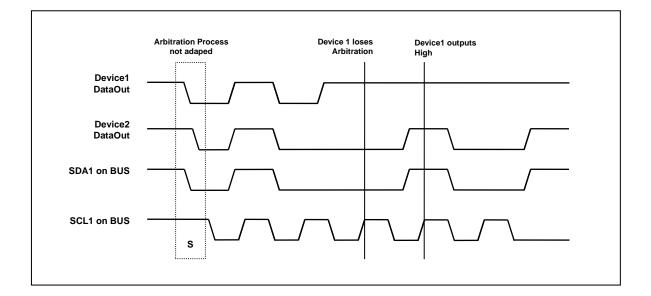



Figure 11.93 Arbitration Procedure of Two Masters (USI1)

### 11.13.20 USI1 I2C Operation

The I2C is byte-oriented and interrupt based. Interrupts are issued after all bus events except for a transmission of a START condition. Because the I2C is interrupt based, the application software is free to carry on other operations during a I2C byte transfer.

Note that when a I2C interrupt is generated, IIC1IFR flag in USI1CR4 register is set, it is cleared by writing an any value to USI1ST2. When I2C interrupt occurs, the SCL1 line is hold LOW until writing any value to USI1ST2. When the IIC1IFR flag is set, the USI1ST2 contains a value indicating the current state of the I2C bus. According to the value in USI1ST2, software can decide what to do next.

I2C can operate in 4 modes by configuring master/slave, transmitter/receiver. The operating mode is configured by a winning master. A more detailed explanation follows below.



# 11.13.20.1 USI1 I2C Master Transmitter

To operate I2C in master transmitter, follow the recommended steps below.

- 10. Enable I2C by setting USI1MS[1:0] bits in USI1CR1 and USI1EN bit in USI1CR2. This provides main clock to the peripheral.
- 11. Load SLA1+W into the USI1DR where SLA1 is address of slave device and W is transfer direction from the viewpoint of the master. For master transmitter, W is '0'. Note that USI1DR is used for both address and data.
- 12. Configure baud rate by writing desired value to both USI1SCLR and USI1SCHR for the Low and High period of SCL1 line.
- 13. Configure the USI0SDHR to decide when SDA1 changes value from falling edge of SCL1. If SDA1 should change in the middle of SCL1 LOW period, load half the value of USI1SCLR to the USI1SDHR.
- 14. Set the STARTC1 bit in USI1CR4. This transmits a START condition. And also configure how to handle interrupt and ACK signal. When the STARTC1 bit is set, 8-bit data in USI1DR is transmitted out according to the baud-rate.
- 15. This is ACK signal processing stage for address packet transmitted by master. When 7-bit address and 1-bit transfer direction is transmitted to target slave device, the master can know whether the slave acknowledged or not in the 9th high period of SCL1. If the master gains bus mastership, I2C generates GCALL interrupt regardless of the reception of ACK from the slave device. When I2C loses bus mastership during arbitration process, the MLOST1 bit in USI1ST2 is set, and I2C waits in idle state or can be operate as an addressed slave. To operate as a slave when the MLOST1 bit in USI1ST2 is set, the ACK1EN bit in USI1CR4 must be set and the received 7-bit address must equal to the USI1SLA[6:0] bits in USI1SAR. In this case I2C operates as a slave transmitter or a slave receiver (go to appropriate section). In this stage, I2C holds the SCL1 LOW. This is because to decide whether I2C continues serial transfer or stops communication. The following steps continue assuming that I2C does not lose mastership during first data transfer.

I2C (Master) can choose one of the following cases regardless of the reception of ACK signal from slave.

1) Master receives ACK signal from slave, so continues data transfer because slave can receive more data from master. In this case, load data to transmit to USI1DR.

2) Master stops data transfer even if it receives ACK signal from slave. In this case, set the STOPC1 bit in USI1CR4.

3) Master transmits repeated START condition with not checking ACK signal. In this case, load SLA1+R/W into the USI1DR and set STARTC1 bit in USI1CR4.

After doing one of the actions above, write any arbitrary to USI1ST2 to release SCL1 line. In case of 1), move to step 7. In case of 2), move to step 9 to handle STOP interrupt. In case of 3), move to step 6 after transmitting the data in USI1DR and if transfer direction bit is '1' go to master receiver section.

- 16. 1-Byte of data is being transmitted. During data transfer, bus arbitration continues.
- 17. This is ACK signal processing stage for data packet transmitted by master. I2C holds the SCL1 LOW. When I2C loses bus mastership while transmitting data arbitrating other masters, the MLOST1 bit in USI1ST2 is set. If then, I2C waits in idle state. When the data in USI1DR is transmitted completely, I2C generates TEND1 interrupt.

I2C can choose one of the following cases regardless of the reception of ACK signal from slave.

1) Master receives ACK signal from slave, so continues data transfer because slave can receive more data from master. In this case, load data to transmit to USI1DR.

2) Master stops data transfer even if it receives ACK signal from slave. In this case, set the STOPC1 bit in USI1CR4.

3) Master transmits repeated START condition with not checking ACK signal. In this case, load SLA1+R/W into the USI1DR and set the STARTC1 bit in USI1CR4.

After doing one of the actions above, write any arbitrary to USI1ST2 to release SCL1 line. In case of 1), move to step 7. In case of 2), move to step 9 to handle STOP interrupt. In case of 3), move to step 6 after transmitting the data in USI1DR, and if transfer direction bit is '1' go to master receiver section.

18. This is the final step for master transmitter function of I2C, handling STOP interrupt. The STOP bit indicates that data transfer between master and slave is over. To clear USI1ST2, write any value to USI1ST2. After this, I2C enters idle state.



The next figure depicts above process for master transmitter operation of I2C.

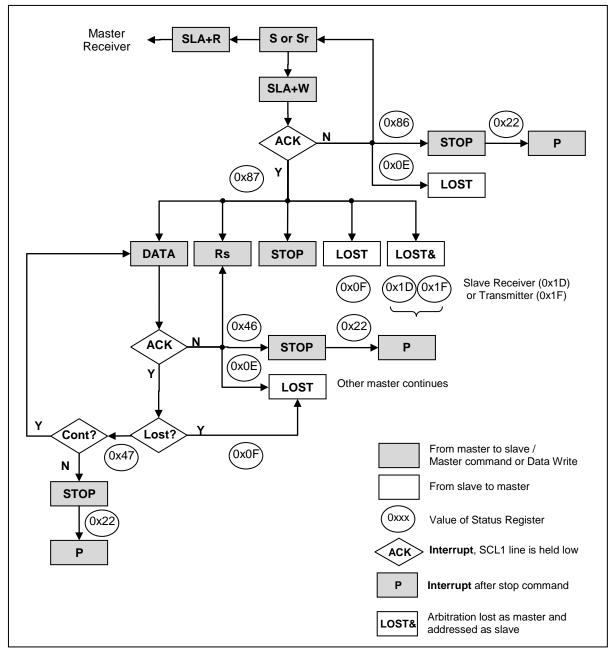



Figure 11.94 Formats and States in the Master Transmitter Mode (USI1)



## 11.13.20.2 USI1 I2C Master Receiver

To operate I2C in master receiver, follow the recommended steps below.

- 10. Enable I2C by setting USI1MS[1:0] bits in USI1CR1 and USI1EN bit in USI1CR2. This provides main clock to the peripheral.
- 11. Load SLA1+R into the USI1DR where SLA is address of slave device and R is transfer direction from the viewpoint of the master. For master receiver, R is '1'. Note that USI1DR is used for both address and data.
- 12. Configure baud rate by writing desired value to both USI1SCLR and USI1SCHR for the Low and High period of SCL1 line.
- 13. Configure the USI1SDHR to decide when SDA1 changes value from falling edge of SCL1. If SDA1 should change in the middle of SCL1 LOW period, load half the value of USI1SCLR to the USI1SDHR.
- 14. Set the STARTC1 bit in USI1CR4. This transmits a START condition. And also configure how to handle interrupt and ACK signal. When the STARTC1 bit is set, 8-bit data in USI1DR is transmitted out according to the baud-rate.
- 15. This is ACK signal processing stage for address packet transmitted by master. When 7-bit address and 1-bit transfer direction is transmitted to target slave device, the master can know whether the slave acknowledged or not in the 9th high period of SCL1. If the master gains bus mastership, I2C generates GCALL interrupt regardless of the reception of ACK from the slave device. When I2C loses bus mastership during arbitration process, the MLOST1 bit in USI1ST2 is set, and I2C waits in idle state or can be operate as an addressed slave. To operate as a slave when the MLOST1 bit in USI1ST2 is set, the ACK1EN bit in USI1CR4 must be set and the received 7-bit address must equal to the USI1SLA[6:0] bits in USI1SAR. In this case I2C operates as a slave transmitter or a slave receiver (go to appropriate section). In this stage, I2C holds the SCL1 LOW. This is because to decide whether I2C continues serial transfer or stops communication. The following steps continue assuming that I2C does not lose mastership during first data transfer.

I2C (Master) can choose one of the following cases according to the reception of ACK signal from slave.

1) Master receives ACK signal from slave, so continues data transfer because slave can prepare and transmit more data to master. Configure ACK0EN bit in USI0CR4 to decide whether I2C ACKnowledges the next data to be received or not.

2) Master stops data transfer because it receives no ACK signal from slave. In this case, set the STOPC1 bit in USI1CR4.

3) Master transmits repeated START condition due to no ACK signal from slave. In this case, load SLA1+R/W into the USI1DR and set STARTC1 bit in USI1CR4.

After doing one of the actions above, write arbitrary value to USI1ST2 to release SCL1 line. In case of 1), move to step 7. In case of 2), move to step 9 to handle STOP interrupt. In case of 3), move to step 6 after transmitting the data in USI1DR and if transfer direction bit is '0' go to master transmitter section.

- 16. 1-Byte of data is being received.
- 17. This is ACK signal processing stage for data packet transmitted by slave. I2C holds the SCL1 LOW. When 1-Byte of data is received completely, I2C generates TEND1 interrupt.

I2C can choose one of the following cases according to the RXACK1 flag in USI1ST2.

1) Master continues receiving data from slave. To do this, set ACK1EN bit in USI0CR4 to ACKnowledge the next data to be received.

2) Master wants to terminate data transfer when it receives next data by not generating ACK signal. This can be done by clearing ACK1EN bit in USI1CR4.

3) Because no ACK signal is detected, master terminates data transfer. In this case, set the STOPC1 bit in USI1CR4.

4) No ACK signal is detected, and master transmits repeated START condition. In this case, load SLA1+R/W into the USI1DR and set the STARTC1 bit in USI1CR4.

After doing one of the actions above, write arbitrary value to USI1ST2 to release SCL1 line. In case of 1) and 2), move to step 7. In case of 3), move to step 9 to handle STOP interrupt. In case of 4), move to step 6 after transmitting the data in USI1DR, and if transfer direction bit is '0' go to master transmitter section.



18. This is the final step for master receiver function of I2C, handling STOP interrupt. The STOP bit indicates that data transfer between master and slave is over. To clear USI1ST2, write any value to USI1ST2. After this, I2C enters idle state.

The processes described above for master receiver operation of I2C can be depicted as the following figure.

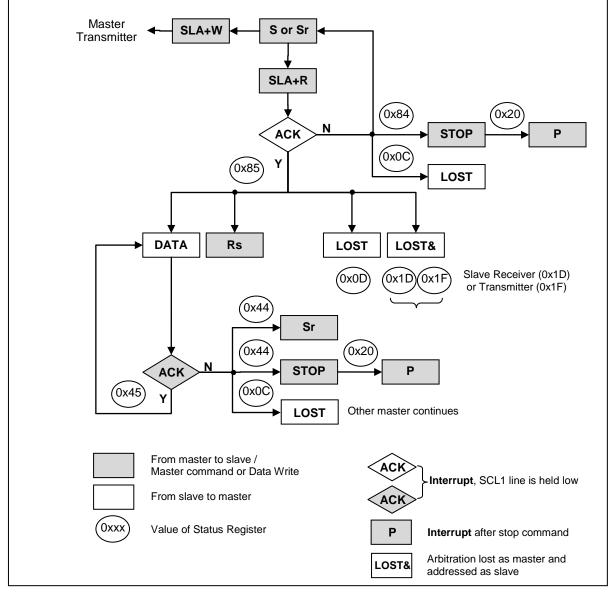
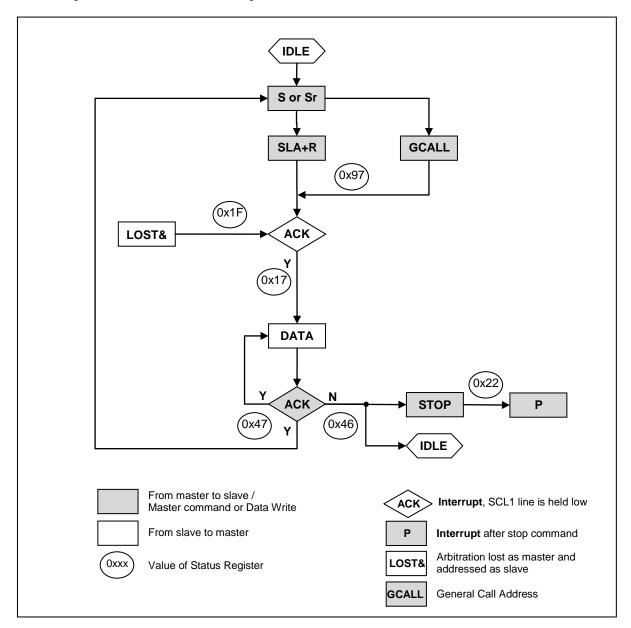



Figure 11.95 Formats and States in the Master Receiver Mode (USI1)



# 11.13.20.3 USI1 I2C Slave Transmitter

To operate I2C in slave transmitter, follow the recommended steps below.


- 8. If the main operating clock (SCLK) of the system is slower than that of SCL1, load value 0x00 into USI1SDHR to make SDA1 change within one system clock period from the falling edge of SCL1. Note that the hold time of SDA1 is calculated by SDAH x period of SCLK where SDAH is multiple of number of SCLK coming from USI1SDHR. When the hold time of SDA1 is longer than the period of SCLK, I2C (slave) cannot transmit serial data properly.
- 9. Enable I2C by setting USI1MS[1:0] bits in USI1CR1, IIC1IE bit in USI1CR4 and USI1EN bit in USI1CR2. This provides main clock to the peripheral.
- 10. When a START condition is detected, I2C receives one byte of data and compares it with USI1SLA[6:0] bits in USI1SAR. If the GCALL1 bit in USI1SAR is enabled, I2C compares the received data with value 0x00, the general call address.
- 11. If the received address does not equal to USI1SLA[6:0] bits in USI1SAR, I2C enters idle state ie, waits for another START condition. Else if the address equals to USI1SLA[6:0] bits and the ACK1EN bit is enabled, I2C generates SSEL1 interrupt and the SCL1 line is held LOW. Note that even if the address equals to USI1SLA[6:0] bits, when the ACK1EN bit is disabled, I2C enters idle state. When SSEL1 interrupt occurs, load transmit data to USI1DR and write arbitrary value to USI1ST2 to release SCL1 line.
- 12. 1-Byte of data is being transmitted.
- 13. In this step, I2C generates TEND1 interrupt and holds the SCL1 line LOW regardless of the reception of ACK signal from master. Slave can select one of the following cases.

No ACK signal is detected and I2C waits STOP or repeated START condition.
 ACK signal from master is detected. Load data to transmit into USI1DR.

After doing one of the actions above, write arbitrary value to USI1ST2 to release SCL1 line. In case of 1) move to step 7 to terminate communication. In case of 2) move to step 5. In either case, a repeated START condition can be detected. For that case, move step 4.

14. This is the final step for slave transmitter function of I2C, handling STOP interrupt. The STOPC1 bit indicates that data transfer between master and slave is over. To clear USI1ST2, write any value to USI1ST2. After this, I2C enters idle state.





The next figure shows flow chart for handling slave transmitter function of I2C.

Figure 11.96 Formats and States in the Slave Transmitter Mode (USI1)



# 11.13.20.4 USI1 I2C Slave Receiver

To operate I2C in slave receiver, follow the recommended steps below.

- 8. If the main operating clock (SCLK) of the system is slower than that of SCL1, load value 0x00 into USI1SDHR to make SDA1 change within one system clock period from the falling edge of SCL1. Note that the hold time of SDA1 is calculated by SDAH x period of SCLK where SDAH is multiple of number of SCLK coming from USI1SDHR. When the hold time of SDA1 is longer than the period of SCLK, I2C (slave) cannot transmit serial data properly.
- 9. Enable I2C by setting USI1MS[1:0] bits in USI1CR1, IIC1IE bit in USI1CR4 and USI1EN bit in USI1CR2. This provides main clock to the peripheral.
- 10. When a START condition is detected, I2C receives one byte of data and compares it with USI1SLA[6:0] bits in USI1SAR. If the GCALL1 bit in USI1SAR is enabled, I2C1 compares the received data with value 0x00, the general call address.
- 11. If the received address does not equal to SLA1 bits in USI1SAR, I2C enters idle state ie, waits for another START condition. Else if the address equals to SLA1 bits and the ACK1EN bit is enabled, I2C generates SSEL1 interrupt and the SCL1 line is held LOW. Note that even if the address equals to SLA1 bits, when the ACK1EN bit is disabled, I2C enters idle state. When SSEL1 interrupt occurs and I2C is ready to receive data, write arbitrary value to USI1ST2 to release SCL1 line.
- 12. 1-Byte of data is being received.
- 13. In this step, I2C generates TEND1 interrupt and holds the SCL1 line LOW regardless of the reception of ACK signal from master. Slave can select one of the following cases.

No ACK signal is detected (ACK1EN=0) and I2C waits STOP or repeated START condition.
 ACK signal is detected (ACK1EN=1) and I2C can continue to receive data from master.

After doing one of the actions above, write arbitrary value to USI1ST2 to release SCL1 line. In case of 1) move to step 7 to terminate communication. In case of 2) move to step 5. In either case, a repeated START condition can be detected. For that case, move step 4.

14. This is the final step for slave receiver function of I2C, handling STOP interrupt. The STOPC1 bit indicates that data transfer between master and slave is over. To clear USI1ST2, write any value to USI1ST2. After this, I2C enters idle state.





The process can be depicted as following figure when I2C operates in slave receiver mode.

Figure 11.97 Formats and States in the Slave Receiver Mode (USI1)

# 11.13.21 USI1 I2C Block Diagram

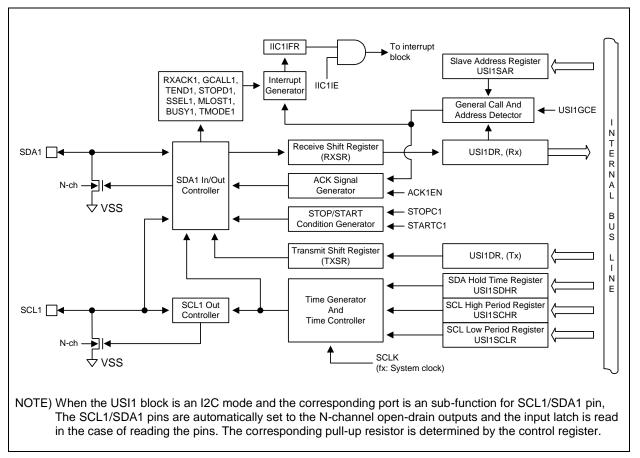



Figure 11.98 USI1 I2C Block Diagram



## 11.13.22 Register Map

Name	Address	Dir	Default	Description
USI1BD	F3H	R/W	FFH	USI1 Baud Rate Generation Register
USI1DR	F5H	R/W	00H	USI1 Data Register
USI1SDHR	F4H	R/W	01H	USI1 SDA Hold Time Register
USI1SCHR	F7H	R/W	3FH	USI1 SCL High Period Register
USI1SCLR	F6H	R/W	3FH	USI1 SCL Low Period Register
USI1SAR	EDH	R/W	00H	USI1 Slave Address Register
USI1CR1	E9H	R/W	00H	USI1 Control Register 1
USI1CR2	EAH	R/W	00H	USI1 Control Register 2
USI1CR3	EBH	R/W	00H	USI1 Control Register 3
USI1CR4	ECH	R/W	00H	USI1 Control Register 4
USI1ST1	F1H	R/W	80H	USI1 Status Register 1
USI1ST2	F2H	R	00H	USI1 Status Register 2

### Table 11-24 USI1 Register Map

## 11.13.23 USI1 Register Description

USI1 module consists of USI1 baud rate generation register (USI1BD), USI1 data register (USI1DR), USI1 SDA hold time register (USI1SDHR), USI1 SCL high period register (USI1SCHR), USI1 SCL low period Register (USI1SCLR), USI1 slave address register (USI1SAR), USI1 control register 1/2/3/4 (USI1CR1/2/3/4), USI1 status register 1/2 (USI1ST1/2).

# 11.13.24 Register Description for USI1

7	6	5	4	3	2	1	0
USI1BD7	USI1BD6	USI1BD5	USI1BD4	USI1BD3	USI1BD2	USI1BD1	USI1BD0
RW	RW	RW	RW	RW	RW	RW	RW
						l	nitial value : FF
	USI	1BD[7:0]	asynchronou	this register i us mode or to	generate SC	K1 clock in S	PI mode. To

### USI1BD (USI1 Baud- Rate Generation Register: For UART and SPI mode) : F3H

prevent malfunction, do not write '0' in asynchronous mode and do not write '0' or '1' in SPI mode.

NOTE) In common with USI1SAR register, USI1BD register is used for slave address register when the USI1 I2C mode.



7	6	5	4	3	2	1	0
USI1DR7	USI1DR6	USI1DR5	USI1DR4	USI1DR3	USI1DR2	USI1DR 1	USI1DR0
RW	RW						
							nitial value : 00

USI1DR[7:0] The USI1 transmit buffer and receive buffer share the same I/O address with this DATA register. The transmit data buffer is the destination for data written to the USI1DR register. Reading the USI1DR register returns the contents of the receive buffer. Write to this register only when the DRE1 flag is set. In SPI master mode, the SCK1 clock is generated when data are written to this register.

### USI1SDHR (USI1 SDA Hold Time Register: For I2C mode) : F4H

USI1DR (USI1 Data Register: For UART, SPI, and I2C mode) : F5H

7	6	5	4	3	2	1	0
USI1SDHR7	USI1SDHR6	USI1SDHR5	USI1SDHR4	USI1SDHR3	USI1SDHR2	USI1SDHR 1	USI1SDHR0
RW	RW						

Initial value : 00H

USI1SDHR[7:0] The register is used to control SDA1 output timing from the falling edge of SCL1 in I2C mode.

NOTE) That SDA1 is changed after  $t_{\text{SCLK}}$  X (USI1SDHR+2), in master SDA1 change in the middle of SCL1.

In slave mode, configure this register regarding the frequency of SCL1 from master.

 $t_{\mbox{\scriptsize SCLK}}$  X (USI1SDHR +2) must be smaller than the period of SCL1.

### USI1SCHR (USI1 SCL High Period Register: For I2C mode) : F7H

7	6	5	4	3	2	1	0	
USI1SCHR7	USI1SCHR6	USI1SCHR5	USI1SCHR4	USI1SCHR3	USI1SCHR2	USI1SCHR 1	USI1SCHR0	
RW	RW	Ī						
						I	nitial value : 0	ЮH

USI1SCHR[7:0] This register defines the high period of SCL1 when it operates in I2C master mode. The base clock is SCLK, the system clock, and the period is calculated by the formula: t_{SCLK} X (4 X USI1SCHR +2) where t_{SCLK} is the period of SCLK.

### So, the operating frequency of I2C master mode is calculated by the following equation.

$$f_{I2C} = \frac{1}{t_{SCLK} X (4 X (USI1SCLR + USI1SCHR + 4))}$$



7	6	5	4	3	2	1	0
USI1SCLR7	USI1SCLR6	USI1SCLR5	USI1SCLR4	USI1SCLR3	USI1SCLR2	USI1SCLR 1	USI1SCLR0
RW	RW						

# USI1SCLR (USI1 SCL Low Period Register: For I2C mode) : F6H

Initial value : 00H

**USI1SCLR[7:0]** This register defines the high period of SCL1 when it operates in I2C master mode.

The base clock is SCLK, the system clock, and the period is calculated by the formula:  $t_{SCLK} X$  (4 X USI1SCLR +2) where  $t_{SCLK}$  is the period of SCLK.

## USI1SAR (USI1 Slave Address Register: For I2C mode) : EDH

7	6	5	4	3	2	1	0	
USI1SLA6	USI1SLA5	USI1SLA4	USI1SLA3	USI1SLA2	USI1SLA1	USI1SLA0	USI1GCE	
RW	RW	RW	RW	RW	RW	RW	RW	
	Initial value : 0							
USI1SLA[6:0]			These bits configure the slave address of I2C when it operaties in I2C slave mode.					
UPM[1:0]			This bit decides whether I2C allows general call address or not in I2C slave mode.					
			0 Ign	Ignore general call address				
			1 Allo	Allow general call address				



7	6	5	4		3	2	1	0
USI1MS1	USI1MS0	USI1PM1	USI1PM	D U	SI1S2	USI1S1 ORD1	USI1S0 CPHA1	CPOL1
RW	RW	RW	RW	I	RW	RW	RW	RW
								Initial value : 0
	US	1MS[1:0]	Selects op	eration m	ode of U	ISI1		
			USI1MS1	USI1M	S0 Op	eration mode		
			0	0 Asynchronous Mode (UART)				
			0	1	Syr	nchronous Mo	ode	
			1	0		mode		
			1	1	SP	l mode		
	US	1PM[1:0]	Selects par	rity gener	ation an	d check meth	ods (only UAF	RT mode)
			USI1PM1	USI1PN	/10 Pai	rity		
			0	0	No	Parity		
			0	1	Re	served		
			1	0	Eve	en Parity		
			1	1	Od	d Parity		
	US	1S[2:0]		-	-		ode of operati	ion,
			selects the	-				
			USI1S2	USI1S1			Length	
			0	0	0	5 bit		
			0	0	1	6 bit		
			0	1	0	7 bit		
			0	1	1	8 bit		
			1	0	0	Rese		
			1	0	1	Rese		
			1	1	0	Rese	rved	
		54	1	1	1	9 bit		
	OR	D1		nsmitted				SB of the data when set to '0'
			0	LSB-fire	st			
			1	MSB-fir	st			
	CP	OL1	This bit de mode.	termines	the cloc	k polarity of	ACK in synch	ronous or SPI
			0	TXD ch	ange@F	Rising Edge, I	RXD change@	Falling Edge
			1	TXD ch	ange@F	alling Edge,	RXD change@	Rising Edge
	CP	HA1						t determines if CK1 (only SPI
			CPOL1	CPHA1	Lea	ading edge	Trailing	l edge
			0	0		mple (Rising)	-	(Falling)
			0	1		up (Rising)		e (Falling)
			1	0		mple (Falling)	-	(Rising)
			1	1		up (Falling)	Sample	

# USI1CR1 (USI1 Control Register 1: For UART, SPI, and I2C mode) : E9H



7	6	5	4	3	2	1	0				
DRIE1	TXCIE1	RXCIE1	WAKEIE1	TXE1	RXE1	USI1EN	DBLS1				
RW	RW	RW	RW	R/W	RW	RW	RW				
						I	nitial value : 00H				
	DR	IE1	Interrupt enable bit for data register empty (only UART and SPI mode).								
			0 Interrupt from DRE1 is inhibited (use polling)								
			1 When DRE1 is set, request an interrupt								
	тхо	CIE1	Interrupt enab	le bit for transm	nit complete (o	only UART and	d SPI mode).				
			0 Interr	upt from TXC1	is inhibited (u	se polling)					
			1 Wher	TXC1 is set, r	equest an inte	errupt					
	RX	CIE1	Interrupt enab	le bit for receive	e complete (o	nly UART and	SPI mode).				
			0 Interr	upt from RXC1	is inhibited (u	se polling)					
			1 When	1 When RXC1 is set, request an interrupt							
	WA	KEIE1	Interrupt enable bit for asynchronous wake in STOP mode. When device is in stop mode, if RXD1 goes to low level an interrupt can be requested to wake-up system. (only UART mode). At that time the DRIE1 bit and USI1ST1 register value should be set to '0b' and "00H", respectively.								
			0 Interrupt from Wake is inhibited								
			1 When WAKE1 is set, request an interrupt								
	TXE	Ξ1	Enables the transmitter unit (only UART and SPI mode).								
			0 Trans	mitter is disable	ed						
			1 Trans	mitter is enable	ed						
	RXI	E1	Enables the re	eceiver unit (on	ly UART and S	SPI mode).					
			0 Rece	ver is disabled							
			1 Rece	ver is enabled							
	USI	1EN	Activate USI1	function block	by supplying.						
			0 USI1	is disabled							
				is enabled							
	DB	LS1	This bit select	s receiver sam	oling rate (only	y UART)					
			0 Normal asynchronous operation								
			1 Doub	e Speed async	chronous oper	ation					

# USI1CR2 (USI1 Control Register 2: For UART, SPI, and I2C mode) : EAH



7	6	5	4	3	2	1	0				
MASTER1	LOOPS1	DISSCK1	USI1SSEN	FXCH1	USI1SB	USI1TX8	USI1RX8				
RW	RW	RW	RW	RW	RW	RW	RW				
						I	nitial value : 00H				
	MA	STER1	Selects master or slave in SPI and synchronous mode operation and controls the direction of SCK1 $\operatorname{pin}$								
			0 Slave mode operation (External clock for SCK1).								
			1 Master mode operation(Internal clock for SCK1).								
	LO	OPS1	Controls the loo mode)	op back mode	of USI1 for t	est mode (onl	y UART and SPI				
			0 Norma	l operation							
			1 Loop E	Back mode							
	DIS	SCK1	In synchronous	mode of oper	ation, selects	the waveform	of SCK1 output				
			0 ACK i master		g while UAR	T is enabled	in synchronous				
			1 ACK is	s active while	any frame is c	on transferring					
	USI	1SSEN	This bit controls the SS1 pin operation (only SPI mode)								
			0 Disable	е							
			1 Enable	e (The SS1 pin	should be a i	normal input)					
	FXC	CH1	SPI port function exchange control bit (only SPI mode)								
			0 No effe	ect							
			1 Exchar	nge MOSI1 an	d MISO1 fund	ction					
	USI	1SB	Selects the len operation.	igth of stop bi	t in asynchro	nous or synch	ronous mode of				
			0 1 Stop	Bit							
			1 2 Stop	Bit							
	USI	1TX8	The ninth bit operation. Write				ronous mode of egister				
			0 MSB (	9 th bit) to be tra	ansmitted is 'C	)'					
			1 MSB (9 th bit) to be transmitted is '1'								
	USI	1RX8	The ninth bit of data frame in asynchronous or synchronous mode of operation. Read this bit first before reading the receive buffer (only UART mode).								
			0 MSB (	9 th bit) receive	d is '0'						
			1 MSB (	9 th bit) receive	d is '1'						

# USI1CR3 (USI1 Control Register 3: For UART, SPI, and I2C mode) : EBH



7	6	5	4	3	2	1	0			
IIC1IFR	-	TXDLYENB1	IIC1IE	ACK1EN	IMASTER1	STOPC1	STARTC1			
R	-	RW	RW	RW	R	RW	RW			
							Initial value : 00			
	IIC		This is an interrupt flag bit for I2C mode. When an interrupt occurs, this bit becomes '1'. This bit is cleared when write any values in th USI1ST2.							
		(	0 I2C interrupt no generation							
		1	1 I2C interrupt generation							
	тх	DLYENB1 ા	JSI1SDHR reg	ister control b	it					
		(	) Enable	USI1SDHR r	egister					
		1	Disable	e USI1SDHR i	register					
	IIC	1 <b>IE</b>	nterrupt Enable	e bit for I2C m	ode					
		(	0 Interrupt from I2C is inhibited (use polling)							
		1	Enable	interrupt for l	2C					
	AC	K1EN (	Controls ACK s	ignal Generat	ion at ninth S	CL1 period.				
		(	) No AC	K signal is ger	nerated (SDA	1 =1)				
		1	ACK si	gnal is genera	ted (SDA1 =0	))				
		1	NOTES) ACK s	ignal is outpu	t (SDA1 =0) fo	or the followin	g 3 cases.			
							s in USI1SAR.			
			2. When receiv enabled.	ved address p	backet equals	to value 0x	00 with GCAL			
			3. When I2C op	perates as a re	ceiver (maste	er or slave)				
	IM		Represent oper		,	,				
		(	• •	n slave mode						
		1	I2C is i	n master mod	е					
	ST	OPC1 \	When I2C is ma	aster, STOP c	ondition gene	ration				
		(			Ū					
		1	1 STOP condition is to be generated							
	ST	ARTC1 \	When I2C is ma		0					
		(			2					
		1	STAR	or repeated	START condit	ion is to be ge	enerated			

# USI1CR4 (USI1 Control Register 4: For I2C mode) : ECH



7	6	5	4	3	2	1	0		
DRE1	TXC1	RXC1	WAKE1	USI1RST	DOR1	FE1	PE1		
RW	RW	R	RW	RW	R	RW	RW		
							nitial value : 8		
	DRE	E1	The DRE1 flag indicates if the transmit buffer (USI1DR) is ready t receive new data. If DRE1 is '1', the buffer is empty and ready to b written. This flag can generate a DRE1 interrupt.						
			0 Tran	smit buffer is no	ot empty.				
			1 Transmit buffer is empty.						
	тхс	:1	been shifted transmit buff service routin	et when the er out and there er. This flag is le of a TXC1 in ot. This bit is au	is no new automaticall terrupt is exec	data currently y cleared wh :uted. This flag	present in the interr		
			0 Tran	smission is ong	oing.				
				smit buffer is e hifted out comp		data in trans	mit shift regis		
	RXC	21	cleared wher	set when there a all the data in I to generate a	the receive b	uffer are read	. The RXC1 f		
			0 Ther	e is no data unr	ead in the rec	eive buffer			
			1 The	re are more that	n 1 data in the	receive buffe	r		
	WA	KE1	This flag is set when the RXD1 pin is detected low while the CPU is i STOP mode. This flag can be used to generate a WAKE1 interrupt. This bit is set only when in asynchronous mode of operation. This bit shoul be cleared by program software. (only UART mode)						
			0 No V	/AKE interrupt i	s generated.				
			1 WAK	E interrupt is ge	enerated				
	USI	1RST	This is an internal reset and only has effect on USI1. Writing '1' to this linitializes the internal logic of USI1 and this bit is automatically cleared '0'.						
			0 No o	peration					
			1 Rese	et USI1					
	DO	र1		if a Data OverF ta frame is igno					
			0 No D	ata OverRun					
			1 Data	OverRun detect	ted				
	FE1		This bit is set if the first stop bit of next character in the receive buffer detected as '0'. This bit is valid until the receive buffer is read. (on UART mode)						
				rame Error					
			1 Frame Error detected						
	PE1		to be receive	if the next chan d while Parity C r is read. (only L	hecking is en				
			0 No P	arity Error					
			1 Parit						

### USI1ST1 (USI1 Status Register 1: For UART and SPI mode) : F1H



7	6	5	4	3	2	1	0			
GCALL1	TEND1	STOPD1	SSEL1	MLOST1	BUSY1	TMODE1	RXACK1			
R	RW	RW	RW	RW	RW	RW	RW			
							nitial value : (			
	GC	ALL1 ^(NOTE)	This bit has different meaning depending on whether I2C is master of slave. When I2C is a master, this bit represents whether it receive AACK (address ACK) from slave.							
			0 No AACK is received (Master mode)							
			1 AACK	is received (N	Aaster mode)					
			When I2C is a	slave, this bit i	s used to indi	cated general	call.			
			0 Gener	al call address	is not detecte	ed (Slave mod	e)			
			1 Gener	al call address	is detected (	Slave mode)				
	TEN	ND1 ^(NOTE)	This bit is set w	/hen 1-byte of	data is transf	erred complete	ely			
			0 1 byte	of data is not	completely tra	ansferred				
			1 1 byte	of data is com	pletely transfe	erred				
	STO	OPD1 ^(NOTE)	This bit is set w	/hen a STOP o	condition is de	etected.				
			0 No ST	OP condition i	s detected					
			1 STOP	condition is d	etected					
	SSI	EL1 ^(NOTE)	This bit is set w	hen I2C is ad	dressed by ot	her master.				
			0 I2C is	not selected a	s a slave					
			1 I2C is	addressed by	other master	and acts as a	slave			
	ML	OST1 ^(NOTE)	This bit represe	ents the result	of bus arbitra	tion in master	mode.			
			0 I2C m	aintains bus m	astership					
			1 I2C m	aintains bus m	astership duri	ng arbitration	process			
	BU	SY1	This bit reflects	bus status.						
			0 I2C bu	s is idle, so a	master can is	sue a START	condition			
			1 I2C bu	s is busy						
	TM	ODE1	This bit is used	to indicate wh	nether I2C is t	ransmitter or r	eceiver.			
			0 I2C is a receiver							
			1 I2C is a transmitter							
	RX	ACK1	This bit shows	the state of AC	CK signal					
			0 No AC	K is received						
			1 ACK is	received at n	inth SCL perio	bd				

#### USI1ST2 (USI1 Status Register 2: For I2C mode) : F2H

NOTE) These bits can be source of interrupt.

When an I2C interrupt occurs except for STOP mode, the SCL1 line is hold LOW. To release SCL1, write rbitrary value to USI1ST2. When USI1ST2 is written, the TEND1, STOPD1, SSEL1, MLOST1, and RXACK1 bits are cleared.

# 11.14.1 Baud Rate setting (example)

Table 11-25 Examples of USI0BD and USI1B	D Settings for Common	ly Used Oscillator Frequencies
		.,

Baud	fx=1.0	fx=1.00MHz		32MHz	fx=2.0	0MHz
Rate	USI0BD/USI1BD	ERROR	USI0BD/USI1BD	ERROR	USI0BD/USI1BD	ERROR
2400	25	0.2%	47	0.0%	51	0.2%
4800	12	0.2%	23	0.0%	25	0.2%
9600	6	-7.0%	11	0.0%	12	0.2%
14.4k	3	8.5%	7	0.0%	8	-3.5%
19.2k	2	8.5%	5	0.0%	6	-7.0%
28.8k	1	8.5%	3	0.0%	3	8.5%
38.4k	1	-18.6%	2	0.0%	2	8.5%
57.6k	-	-	1	-25.0%	1	8.5%
76.8k	-	-	1	0.0%	1	-18.6%
115.2k	-	-	-	-	-	-
230.4k	-	-	-	-	-	-

#### (continued)

Baud	fx=3.68	64MHz	fx=4.0	0MHz	fx=7.37	28MHz
Rate	USI0BD/USI1BD	ERROR	USI0BD/USI1BD	ERROR	USI0BD/USI1BD	ERROR
2400	95	0.0%	103	0.2%	191	0.0%
4800	47	0.0%	51	0.2%	95	0.0%
9600	23	0.0%	25	0.2%	47	0.0%
14.4k	15	0.0%	16	2.1%	31	0.0%
19.2k	11	0.0%	12	0.2%	23	0.0%
28.8k	7	0.0%	8	-3.5%	15	0.0%
38.4k	5	0.0%	6	-7.0%	11	0.0%
57.6k	3	0.0%	3	8.5%	7	0.0%
76.8k	2	0.0%	2	8.5%	5	0.0%
115.2k	1	0.0%	1	8.5%	3	0.0%
230.4k	-	-	-	-	1	0.0%
250k	-	-	-	-	1	-7.8%
0.5M	-	-	-	-	-	-

### (continued)

Baud	fx=8.0	0MHz	fx=11.05	592MHz
Rate	USI0BD/USI1BD	ERROR	USI0BD/USI1BD	ERROR
2400	207	0.2%	-	-
4800	103	0.2%	143	0.0%
9600	51	0.2%	71	0.0%
14.4k	34	-0.8%	47	0.0%
19.2k	25	0.2%	35	0.0%
28.8k	16	2.1%	23	0.0%
38.4k	12	0.2%	17	0.0%
57.6k	8	-3.5%	11	0.0%
76.8k	6	-7.0%	8	0.0%
115.2k	3	8.5%	5	0.0%
230.4k	1	8.5%	2	0.0%
250k	1	0.0%	2	-7.8%
0.5M	-	-	-	-
1M	-	-	-	-



# 11.15 LCD Driver

## 11.15.1 Overview

The LCD driver is controlled by the LCD Control Register (LCDCRH/L). The LCLK[1:0] determines the frequency of COM signal scanning of each segment output. A RESET clears the LCD control register LCDCRH and LCDCRL values to logic '0'.

The LCD display can continue operating during IDLE and STOP modes if a sub-frequency clock is used as system clock source.

# 11.15.2 LCD Display RAM Organization

Display data are stored to the display data area in the external data memory.

The display data which stored to the display external data area (address 0000H-001AH) are read automatically and sent to the LCD driver by the hardware. The LCD driver generates the segment signals and common signals in accordance with the display data and drive method. Therefore, display patterns can be changed by only overwriting the contents of the display external data area with a program.

Figure 11-99 shows the correspondence between the display external data area and the COM/SEG pins. The LCD is turned on when the display data is "1" and turned off when "0".

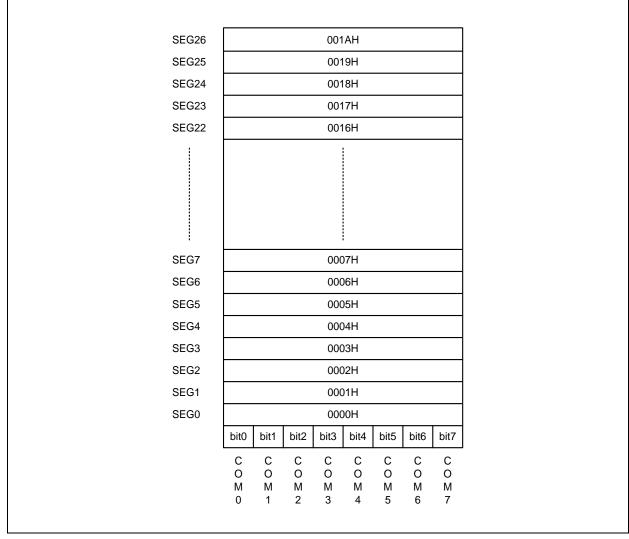
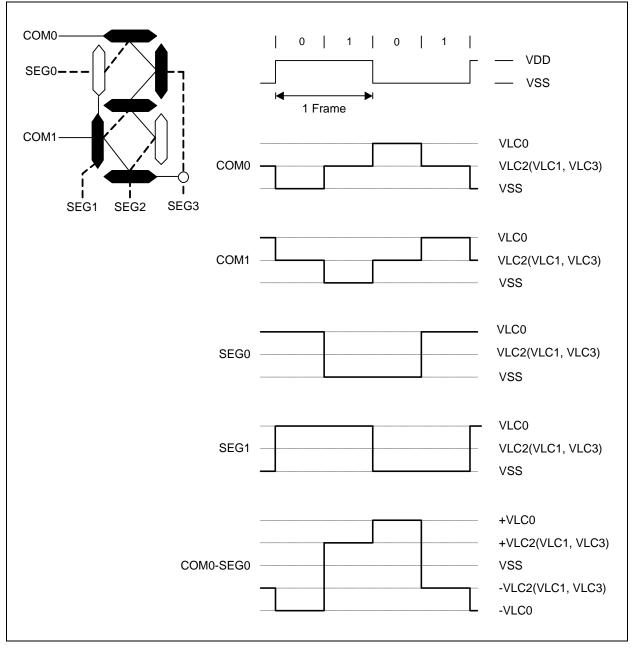




Figure 11.99 LCD Circuit Block Diagram



# 11.15.3 LCD Signal Waveform







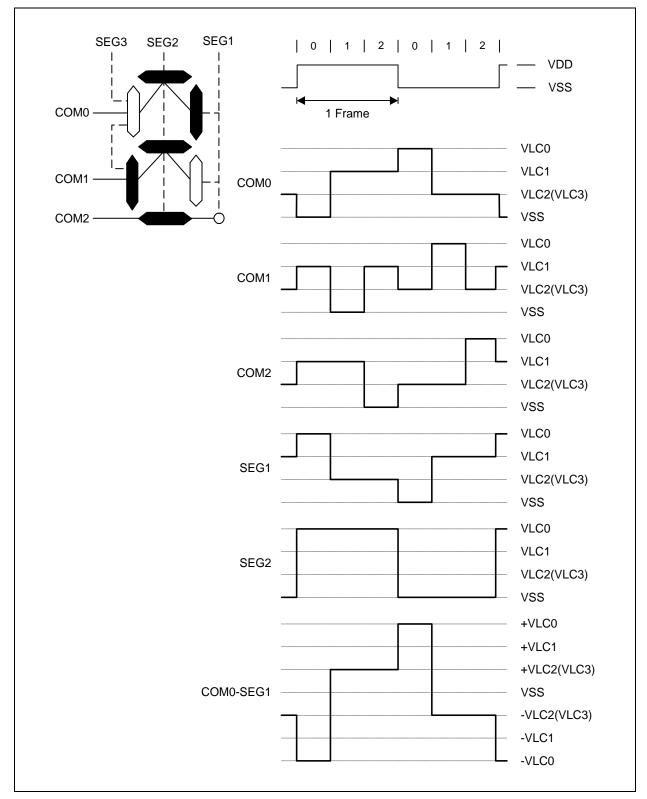



Figure 11.101 LCD Signal Waveforms (1/3Duty, 1/3Bias)



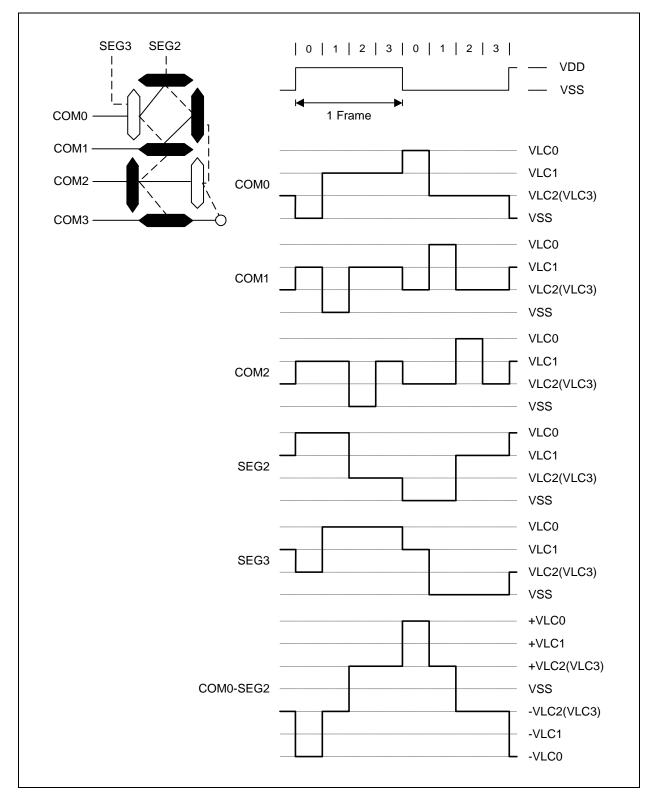



Figure 11.102 LCD Signal Waveforms (1/4Duty, 1/3Bias)



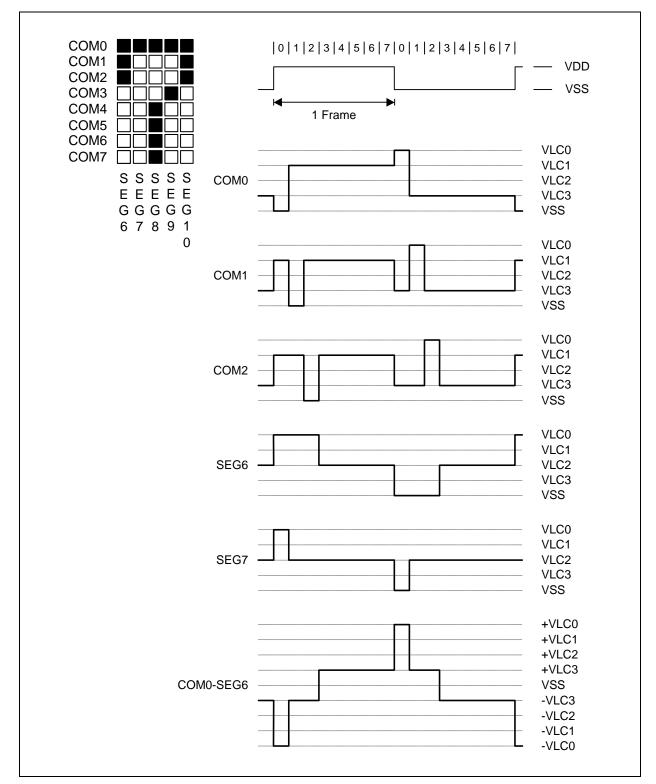
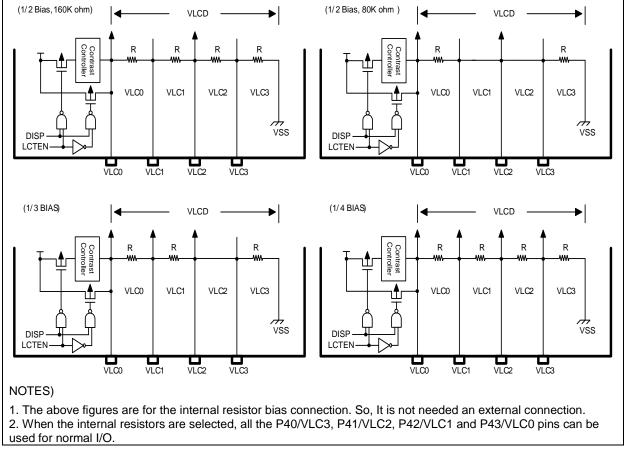
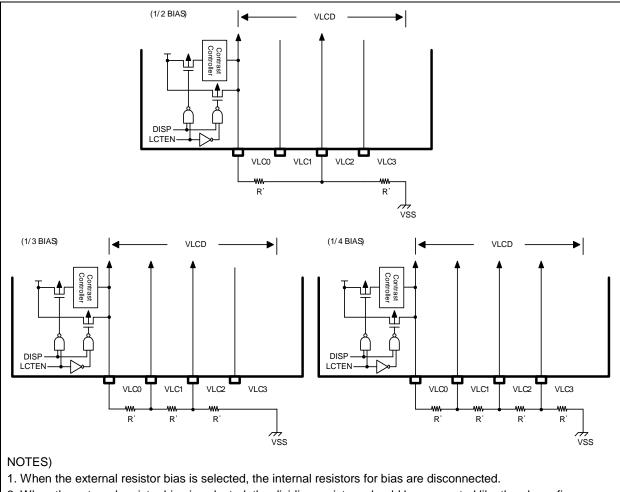




Figure 11.103 LCD Signal Waveforms (1/8Duty, 1/4Bias)






# 11.15.4 LCD Voltage Dividing Resistor Connection

Figure 11.104 Internal Resistor Bias Connection





- 2. When the external resistor bias is selected, the dividing resistors should be connected like the above figure and the needed bias pins should be selected as the LCD bias function pins (VLC0, VLC1, VLC2, and VLC3) by P4FSR register.
- When it is 1/2 bias, the P43/VLC0 and P41/VLC2 pins should be selected as VLC0 and VLC2 functions. The other pins can be used for normal I/O.
- When it is 1/3 bias, the P43/VLC0, P42/VLC1, and P41/VLC2 pins should be selected as VLC0, VLC1, and VLC2 functions. Another pin can be used for normal I/O.
- When it is 1/4 bias, the P43/VLC0, P42/VLC1, P41/VLC2, and P40/VLC3 pins should be selected as VLC0, VLC1, VLC2, and VLC3 functions

#### Figure 11.105 External Resistor Bias Connection



# 11.15.5 Block Diagram

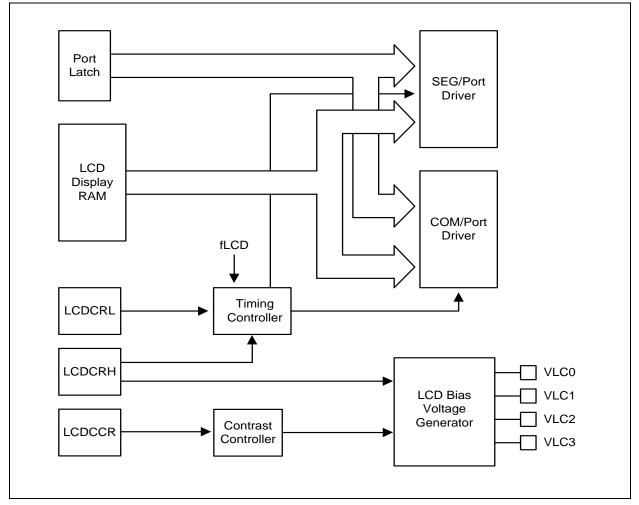



Figure 11.106 LCD Circuit Block Diagram

## 11.15.6 Register Map

#### Table 11-26 LCD Register Map

Name	Address	Dir	Default	Description
LCDCRH	9AH	R/W	00H	LCD Driver Control High Register
LCDCRL	99H	R/W	00H	LCD Driver Control Low Register
LCDCCR	9BH	R/W	00H	LCD Contrast Control Register

# 11.15.7 LCD Driver Register Description

LCD driver register has two control registers, LCD driver control high register (LCDCRH), LCD driver control low register (LCDCRL) and LCD contrast control register.



# 11.15.8 Register Description for LCD Driver

7	6	5	4	3	2	1	0			
-	-	-	COMCHG	-	-	LCDDR	DISP			
-	-	-	RW	-	-	RW	RW			
		Initial value :								
	CO	MCHG (	Common Signa	al Output Port	Change Cont	rol				
		(	COM	0 – COM3 sig	nals are outpu	itted through t	he P37-P34			
			I COM	0 – COM3 sig	nals are outpu	itted through t	he P33-P30			
	NOTES)									
	1. The COM0/COM1/COM2/COM3 signals can be outputted through									
			the P33/P32	/P31/P30, res	pectively.					
			2. For example		• •	•	33 pin if the			
				1b" and the C						
			3. Refer to the	port3 function	selection regi	ster (P3FSR).				
		4	<ol> <li>Available on</li> </ol>	ly below the 1	/4 duty.					
	LCI	DDR I	CD Driving Re	esistor for Bias	s Select					
		(	) Interr	al LCD driving	g resistors for	bias				
			I Exter	nal ICD driving	g resistors for	bias				
	DIS	P I	_CD Display C	ontrol						
		(	0 Display off							
			I Norm	al display on						

# LCDCRH (LCD Driver Control High Register) : 9AH



7	6	5		4	3		2	1	0
_	-	DBS3	DE	3S2	DBS1	C	BS0	LCLK1	LCK0
-	-	R/W	R	Ŵ	RW	I	RW	RW	RW
									Initial value :
	DB	S[3:0]	LCD Du	ity and B	ias Selec	t (NOTE)			
			DBS3	DBS2	DBS1	DBS0	Descr	iption	
			0	0	0	0	1/8Du	ty, 1/4Bias (60	Ok ohm)
			0	0	0	1	1/6Du	ty, 1/4Bias (60	Ok ohm)
			0	0	1	0	1/5Du	ty, 1/3Bias (60	Ok ohm)
			0	0	1	1	1/4Du	ty, 1/3Bias (60	Ok ohm)
			0	1	0	0	1/3Du	ty, 1/3Bias (60	Ok ohm)
			0	1	0	1	1/3Du	ty, 1/2Bias (60	Ok ohm)
			0	1	1	0	1/3Du	ty, 1/2Bias (12	20k ohm)
			0	1	1	1	1/2Du	ty, 1/2Bias (60	Ok ohm)
			1	0	0	0	1/2Du	ty, 1/2Bias (12	20k ohm)
			Other va	alues			Not av	vailable	
	LCI	LK[1:0]	LCD Clo	ock Selec	ct (When	f _{wcк} (Wat	ch timei	r clock)= 32.76	68 kHz)
			LCLK1	LCLK0	Descrip	otion			
			0	0	$f_{LCD} = 1$	28Hz			
			0	1	$f_{LCD} = 2$	256Hz			
			1	0	$f_{LCD} = 5$	512Hz			
			1	1	$f_{LCD} = 1$	024Hz			
			NOTE)	The LCE	) clock is	s generat	ted by v	vatch timer cl	ock (f _{wcк} ). S

#### LCDCRL (LCD Driver Control Low Register) : 99H

NOTE) The LCD clock is generated by watch timer clock ( $f_{\rm WCK}$ ). So the watch timer should be enabled when the LCD display is turned on.



7	6	5	4	1	3	2	1	0
LCTEN	_	-	-	-	VLCD3	VLCD	VLCD1	VLCD0
RW	-	-	-	-	RW	RW	RW	RW
								nitial value : C
	LC.	TEN	Control	LCD Drive	r Contrast			
			0	LCD Driv	ver Contras	st disable		
			1	LCD Driv	ver Contras	st enable		
	VL	CD[3:0]	VLC0 V	oltage Con	trol when t	the contrast	is enabled	
			VLCD3	VLCD 2	VLCD 1	VLCD 0	Description	
			0	0	0	0	VLC0 = VDD >	x 16/31 step
			0	0	0	1	VLC0 = VDD >	(16/30 step
			0	0	1	0	VLC0 = VDD >	c 16/29 step
			0	0	1	1	VLC0 = VDD >	c 16/28 step
			0	1	0	0	VLC0 = VDD >	c 16/27 step
			0	1	0	1	VLC0 = VDD >	c 16/26 step
			0	1	1	0	VLC0 = VDD >	16/25 step
			0	1	1	1	VLC0 = VDD >	x 16/24 step
			1	0	0	0	VLC0 = VDD >	16/23 step
			1	0	0	1	VLC0 = VDD >	x 16/22 step
			1	0	1	0	VLC0 = VDD >	x 16/21 step
			1	0	1	1	VLC0 = VDD >	x 16/20 step
			1	1	0	0	VLC0 = VDD >	c 16/19 step
			1	1	0	1	VLC0 = VDD >	c 16/18 step
			1	1	1	0	VLC0 = VDD >	c 16/17 step
			1	1	1	1	VLC0 = VDD >	(16/16 step
			1/4 bias	) The LCD : VDD x (1 : VDD x (1	16/31 – VL	C[3:0])	d on 1/4 bias.	
				: VDD x (8				

### LCDCCR (LCD Driver Contrast Control Low Register) : 9BH



# **12. Power Down Operation**

## 12.1 Overview

The MC96F6432 has two power-down modes to minimize the power consumption of the device. In power down mode, power consumption is reduced considerably. The device provides three kinds of power saving functions, Main-IDLE, Sub-IDLE and STOP mode. In three modes, program is stopped.

# 12.2 Peripheral Operation in IDLE/STOP Mode

Peripheral	IDLE Mode	STOP Mode
CPU	ALL CPU Operation are Disable	ALL CPU Operation are Disable
RAM	Retain	Retain
Basic Interval Timer	Operates Continuously	Stop
Watch Dog Timer	Operates Continuously	Stop (Can be operated with WDTRC OSC)
Watch Timer	Operates Continuously	Stop (Can be operated with sub clock)
Timer0~4	Operates Continuously	Halted (Only when the Event Counter Mode is Enabled, Timer operates Normally)
ADC	Operates Continuously	Stop
BUZ	Operates Continuously	Stop
SPI	Operates Continuously	Only operate with external clock
USI0/1	Operates Continuously	Only operate with external clock
LCD Controller	Operates Continuously	Stop (Can be operated with sub clock)
Internal OSC (16MHz)	Oscillation	Stop when the system clock (fx) is firc
WDTRC OSC (5kHz)	Stop	Can be operated with setting value
Main OSC (0.4~12MHz)	Oscillation	Stop when fx = fxiN
Sub OSC (32.768kHz)	Oscillation	Stop when fx = fsuB
I/O Port	Retain	Retain
Control Register	Retain	Retain
Address Data Bus	Retain	Retain
Release Method	By RESET, all Interrupts	By RESET, Timer Interrupt (EC0, EC1, EC3), SPI (External clock), External Interrupt, UART by ACK, WT (sub clock), WDT



## 12.3 IDLE Mode

The power control register is set to '01h' to enter the IDLE Mode. In this mode, the internal oscillation circuits remain active. Oscillation continues and peripherals are operated normally but CPU stops. It is released by reset or interrupt. To be released by interrupt, interrupt should be enabled before IDLE mode. If using reset, because the device becomes initialized state, the registers have reset value.

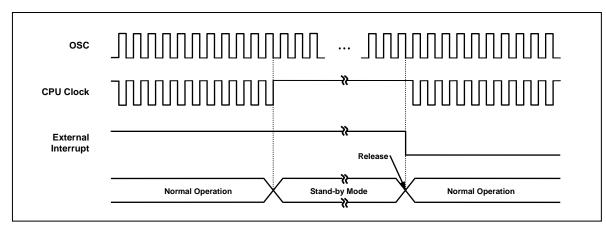



Figure 12.1 IDLE Mode Release Timing by External Interrupt



## 12.4 STOP Mode

The power control register is set to '03H' to enter the STOP Mode. In the stop mode, the selected oscillator, system clock and peripheral clock is stopped, but watch timer can be continued to operate with sub clock. With the clock frozen, all functions are stopped, but the on-chip RAM and control registers are held. For example, If the internal RC oscillator (fiRc) is selected for the system clock and the sub clock (fsub) is oscillated, the internal RC oscillator stops oscillation and the sub clock is continuously oscillated in stop mode. At that time, the watch timer and LCD controller can be operated with the sub clock.

The source for exit from STOP mode is hardware reset and interrupts. The reset re-defines all the control registers.

When exit from STOP mode, enough oscillation stabilization time is required to normal operation. Figure 12.2 shows the timing diagram. When released from STOP mode, the Basic interval timer is activated on wake-up. Therefore, before STOP instruction, user must be set its relevant prescale divide ratio to have long enough time. This guarantees that oscillator has started and stabilized.

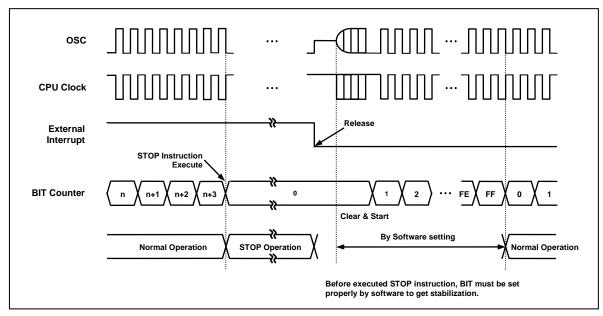



Figure 12.2 STOP Mode Release Timing by External Interrupt



# 12.5 Release Operation of STOP Mode

After STOP mode is released, the operation begins according to content of related interrupt register just before STOP mode start (Figure 12.3). If the global interrupt Enable Flag (IE.EA) is set to `1`, the STOP mode is released by the interrupt which each interrupt enable flag = `1` and the CPU jumps to the relevant interrupt service routine. Even if the IE.EA bit is cleared to '0', the STOP mode is released by the interrupt of which the interrupt enable flag is set to '1'.

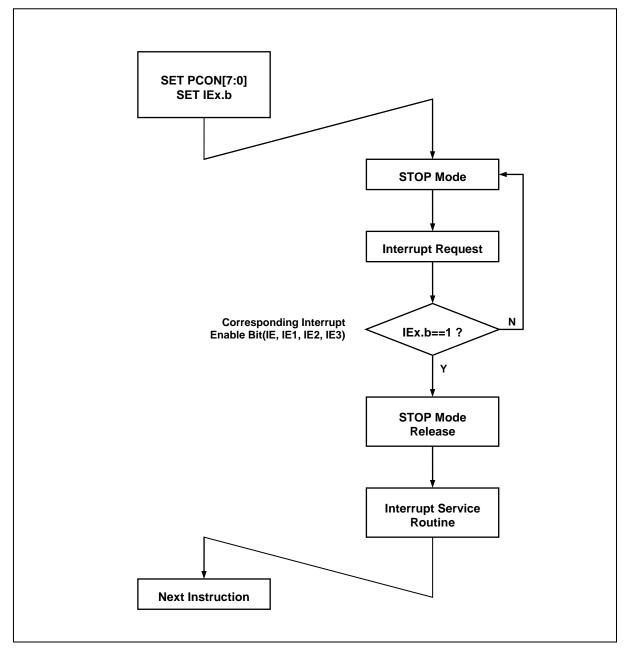



Figure 12.3 STOP Mode Release Flow



## 12.5.1 Register Map

#### Table 12-2 Power Down Operation Register Map

Name	Address	Dir	Default	Description
PCON	87H	R/W	00H	Power Control Register

#### 12.5.2 Power Down Operation Register Description

The power down operation register consists of the power control register (PCON).

#### 12.5.3 Register Description for Power Down Operation

#### PCON (Power Control Register) : 87H

7	6	5	4	3	2	1	0
PCON7	-	-	-	PCON3	PCON2	PCON1	PCON0
RW	-	-	-	RW	RW	RW	RW
						I	nitial value : 00H

PC	10	J[7	:01	
		·L·		

Power Control

01H	IDLE mode enable
03H	STOP mode enable
Other Values	Normal operation

NOTES) 1. To enter IDLE mode, PCON must be set to '01H'.

2. To enter STOP mode, PCON must be set to '03H'.

3. The PCON register is automatically cleared by a release signal in STOP/IDLE mode.

4. Three or more NOP instructions must immediately follow the instruction that make the device enter STOP/IDLE mode. Refer to the following examples.

Ex1)	Mov Nop Nop Nop	PCON, #01H	; IDLE mode	Ex2)	MOV NOP NOP NOP	PCON, #03H	; STOP mode
	•				•		
	•				•		
	•				•		

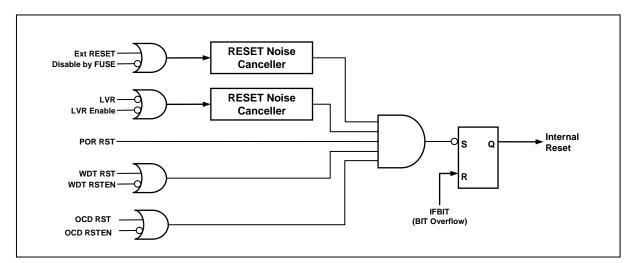


# 13. RESET

## 13.1 Overview

The following is the hardware setting value.

#### Table 13-1 Reset State


On Chip Hardware	Initial Value
Program Counter (PC)	0000h
Accumulator	00h
Stack Pointer (SP)	07h
Peripheral Clock	On
Control Register	Refer to the Peripheral Registers

## 13.2 Reset Source

The MC96F6432 has five types of reset sources. The following is the reset sources.

- External RESETB
- Power ON RESET (POR)
- WDT Overflow Reset (In the case of WDTEN = `1`)
- Low Voltage Reset (In the case of LVREN = `0 `)
- OCD Reset

## 13.3 RESET Block Diagram



### Figure 13.1 RESET Block Diagram



# 13.4 RESET Noise Canceller

The Figure 13.2 is the noise canceller diagram for noise cancellation of RESET. It has the noise cancellation value of about 2us ( $@V_{DD}=5V$ ) to the low input of system reset.

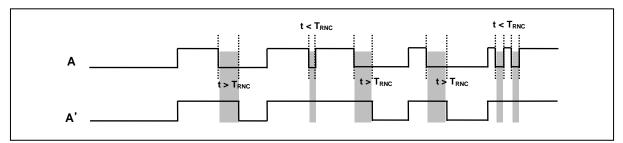



Figure 13.2 Reset noise canceller timer diagram

## **13.5 Power on RESET**

When rising device power, the POR (Power On Reset) has a function to reset the device. If POR is used, it executes the device RESET function instead of the RESET IC or the RESET circuits.

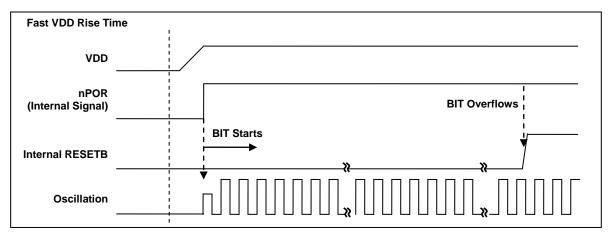



Figure 13.3 Fast VDD Rising Time

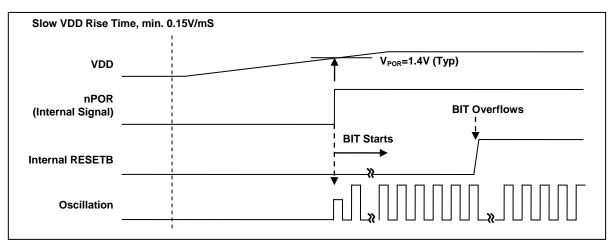



Figure 13.4 Internal RESET Release Timing On Power-Up



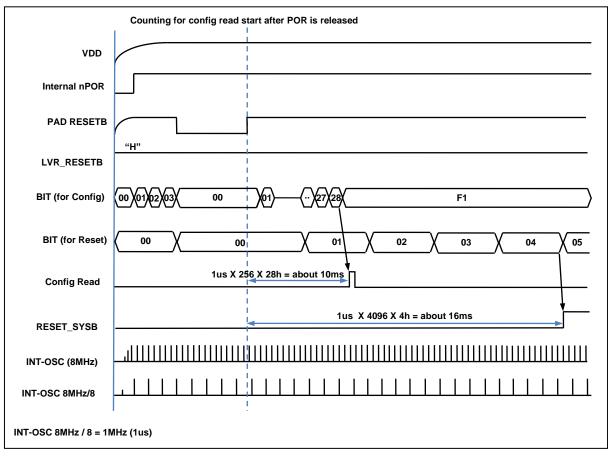



Figure 13.5 Configuration Timing when Power-on

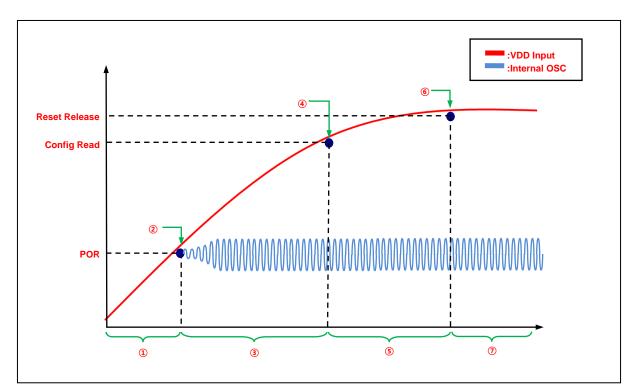



Figure 13.6 Boot Process WaveForm



#### Table 13-2 Boot Process Description

Process	Description	Remarks
1	-No Operation	
2	-1st POR level Detection	-about 1.4V
3	<ul> <li>- (INT-OSC 8MHz/8)x256x28h Delay section (=10ms)</li> <li>-VDD input voltage must rise over than flash operating voltage for Config read</li> </ul>	-Slew Rate >= 0.15V/ms
4	- Config read point	-about 1.5V ~ 1.6V -Config Value is determined by Writing Option
5	- Rising section to Reset Release Level	-16ms point after POR or Ext_reset release
6	<ul> <li>Reset Release section (BIT overflow)</li> <li>i) after16ms, after External Reset Release (External reset)</li> <li>ii) 16ms point after POR (POR only)</li> </ul>	- BIT is used for Peripheral stability
$\bigcirc$	-Normal operation	

# **13.6 External RESETB Input**

The External RESETB is the input to a Schmitt trigger. If RESETB pin is held with low for at least 10us over within the operating voltage range and stable oscillation, it is applied and the internal state is initialized. After reset state becomes '1', it needs the stabilization time with 16ms and after the stable state, the internal RESET becomes '1'. The Reset process step needs 5 oscillator clocks. And the program execution starts at the vector address stored at address 0000H.

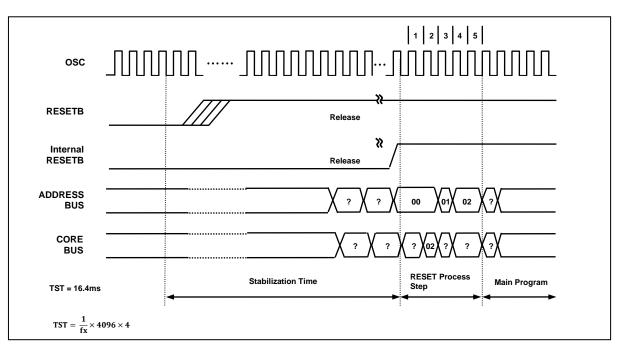



Figure 13.7 Timing Diagram after RESET

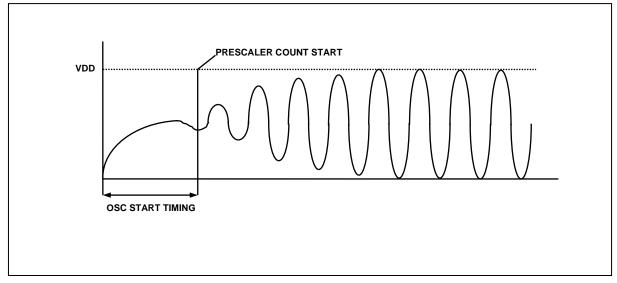



Figure 13.8 Oscillator generating waveform example

NOTE) As shown Figure 13.8, the stable generating time is not included in the start-up time. The RESETB pin has a Pull-up register by H/W.



## **13.7 Brown Out Detector Processor**

The MC96F6432 has an On-chip brown-out detection circuit (BOD) for monitoring the VDD level during operation by comparing it to a fixed trigger level. The trigger level for the BOD can be selected by LVRVS[3:0] bit to be 1.60V, 2.00V, 2.10V, 2.20V, 2.32V, 2.44V, 2.59V, 2.75V, 2.93V, 3.14V, 3.38V, 3.67V, 4.00V, 4.40V. In the STOP mode, this will contribute significantly to the total current consumption. So to minimize the current consumption, the LVREN bit is set to off by software.



Figure 13.9 Block Diagram of BOD

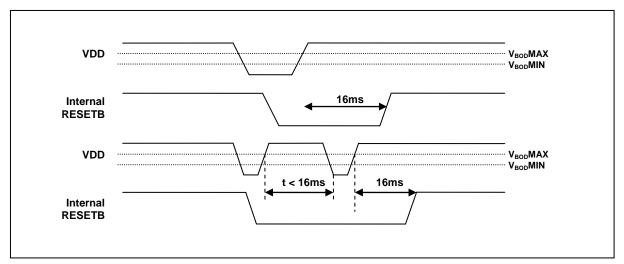



Figure 13.10 Internal Reset at the power fail situation



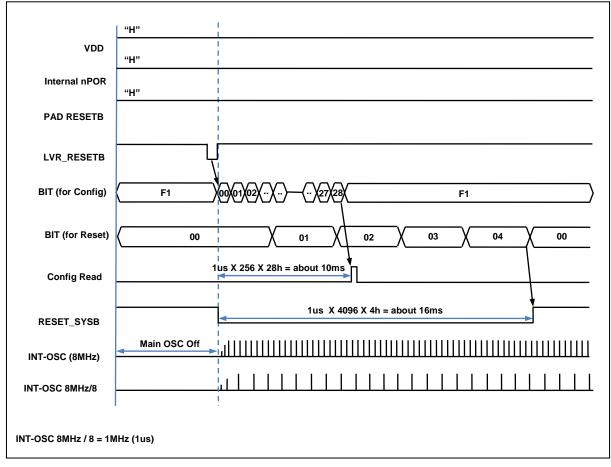
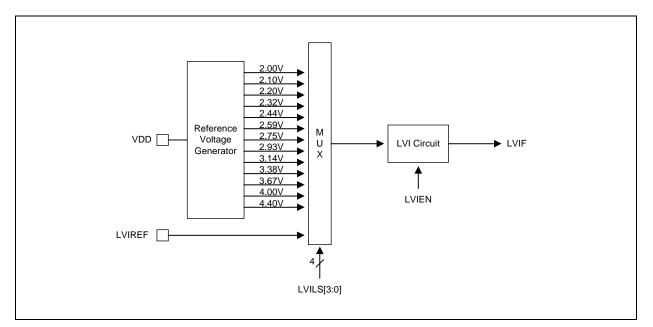
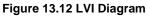





Figure 13.11 Configuration timing when BOD RESET



## 13.8 LVI Block Diagram



## 13.8.1 Register Map

Table 13-3 Reset Operation Register Map	
-----------------------------------------	--

Name	Address	Dir	Default	Description
RSTFR	E8H	R/W	80H	Reset Flag Register
LVRCR	D8H	R/W	00H	Low Voltage Reset Control Register
LVICR	86H	R/W	00H	Low Voltage Indicator Control Register

### **13.8.2 Reset Operation Register Description**

The reset control register consists of the reset flag register (RSTFR), low voltage reset control register (LVRCR), and low voltage indicator control register (LVICR).

## 13.8.3 Register Description for Reset Operation

7	6	5	4	3	2	1	0		
PORF	EXTRF	WDTRF	OCDRF	LVRF	_	_	-		
RW	RW	RW	RW	RW	_	_	_		
							nitial value : 80		
	PO	RF	Power-On Reset flag bit. The bit is reset by writing '0' to this bit.						
			0 No detection						
			1 Detec	tion					
	EXT	ſRF	External Reset (RESETB) flag bit. The bit is reset by writing '0' to this or by Power-On Reset.						
			0 No de	etection					
			1 Detection						
	WD	TRF	Watch Dog Reset flag bit. The bit is reset by writing '0' to this bit or Power-On Reset.						
			0 No de	etection					
			1 Detec	tion					
OCDF		DRF	On-Chip Debug Reset flag bit. The bit is reset by writing '0' to this bit Power-On Reset.						
			0 No detection						
			1 Detec	tion					
	LVF	RF	Low Voltage Reset flag bit. The bit is reset by writing '0' to this bit or b Power-On Reset.						
			0 No de	tection					
			1 Detec	tion					

# OCDRF) bits are all cleared to "0".

2. When the Power-On Reset occurs, the EXTRF bit is unknown, At that time, the EXTRF bit can be set to "1" when External Reset (RESETB) occurs.

3. When the Power-On Reset occurs, the LVRF bit is unknown, At that time, the LVRF bit can be set to "1" when LVR Reset occurs.

4. When a reset except the POR occurs, the corresponding flag bit is only set to "1", the other flag bits are kept in the previous values.



7	6	5	4		3	2	1	0		
LVRST	_	_	LVRV	53 LV	RVS2	LVRVS1	LVRVS0	LVREN		
RW	_	· –	RW	' ['] I		RW	RW	RW		
							I	nitial value :		
	LV	RST	LVR Enable when Stop Release							
			0 Not effect at stop release							
			1 LVR enable at stop release							
			NOTES)							
				s bit is '1', _VR enable		EN bit is clea	ared to '0' by	stop mode		
			When this release.	s bit is '0'	, the LVI	REN bit is r	not effect by	stop mode		
	LV	RVS[3:0]	LVR Volta	ige Select						
			LVRVS3	LVRVS2	LVRVS	1 LVRVS0	Description			
			0	0	0	0	1.60V			
			0	0	0	1	2.00V			
			0	0	1	0	2.10V			
			0	0	1	1	2.20V			
			0	1	0	0	2.32V			
			0	1	0	1	2.44V			
			0	1	1	0	2.59V			
			0	1	1	1	2.75V			
			1	0	0	0	2.93V			
			1	0	0	1	3.14V			
			1	0	1	0	3.38V			
			1	0	1	1	3.67V			
			1	1	0	0	4.00V			
			1	1	0	1	4.40V			
			1	1	1	0	Not available	;		
			1	1	1	1	Not available	;		
	LV	REN	LVR Operation							
			0 LVR Enable							
			1 LVR Disable							

NOTE) The LVRVS[3:0] and LVREN bits are not retained at a power-on reset but are retained at the other reset signals.



7	6	5	4	1	3	2	1	0
_	_	LVIF	LV	EN	LVILS3	LVILS2	LVILS1	LVILSO
-	– RW		R	W	RW	RW	RW	RW
								Initial value : 0
	LVI	F	Low Vol	tage Indica	ator Flag B			
			0	No detec	tion			
			1	Detection	n			
	LVI	LVIEN		ble/Disabl	е			
			0	Disable				
			1	Enable				
	LVILS[3:0]		LVI Level Select					
			LVILS3	LVILS2	LVILS1	LVILS0	Description	
			0	0	0	0	2.00V	
			0	0	0	1	2.10V	
			0	0	1	0	2.20V	
			0	0	1	1	2.32V	
			0	1	0	0	2.44V	
			0	1	0	1	2.59V	
			0	1	1	0	2.75V	
			0	1	1	1	2.93V	
			1	0	0	0	3.14V	
			1	0	0	1	3.38V	
			1	0	1	0	3.67V	
			1	0	1	1	4.00V	
			1	1	0	0	4.40V	
			Other Va	alues			Not available	

# LVICR (Low Voltage Indicator Control Register) : 86H

# 14. On-chip Debug System

### 14.1 Overview

## 14.1.1 Description

On-chip debug system (OCD) of MC96F6432 can be used for programming the non-volatile memories and onchip debugging. Detail descriptions for programming via the OCD interface can be found in the following chapter.

Figure 14.1 shows a block diagram of the OCD interface and the On-chip Debug system.

## 14.1.2 Feature

- Two-wire external interface: 1-wire serial clock input, 1-wire bi-directional serial data bus
- Debugger Access to:
  - All Internal Peripheral Units
  - Internal data RAM
  - Program Counter
  - Flash and Data EEPROM Memories
- Extensive On-chip Debug Support for Break Conditions, Including
  - Break Instruction
  - Single Step Break
  - Program Memory Break Points on Single Address
  - Programming of Flash, EEPROM, Fuses, and Lock Bits through the two-wire Interface
  - On-chip Debugging Supported by Dr.Choice[®]
- Operating frequency
  - Supports the maximum frequency of the target MCU

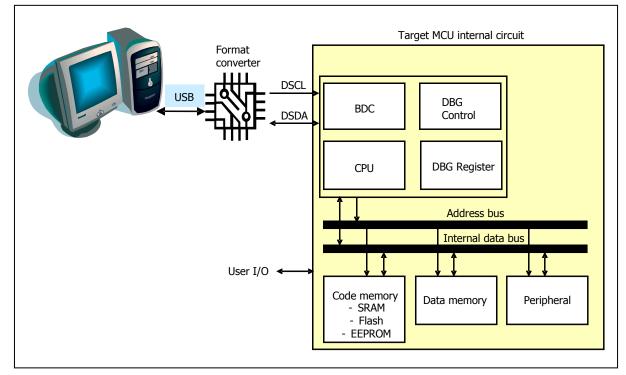



Figure 14.1 Block Diagram of On-Chip Debug System



# 14.2 Two-Pin External Interface

# 14.2.1 Basic Transmission Packet

- 10-bit packet transmission using two-pin interface.
- 1-packet consists of 8-bit data, 1-bit parity and 1-bit acknowledge.
- Parity is even of '1' for 8-bit data in transmitter.
- Receiver generates acknowledge bit as '0' when transmission for 8-bit data and its parity has no error.
- When transmitter has no acknowledge (Acknowledge bit is '1' at tenth clock), error process is executed in transmitter.
- When acknowledge error is generated, host PC makes stop condition and transmits command which has error again.
- Background debugger command is composed of a bundle of packet.
- Start condition and stop condition notify the start and the stop of background debugger command respectively.

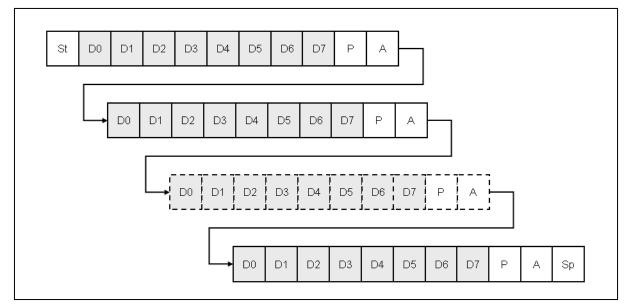



Figure 14.2 10-bit Transmission Packet



# 14.2.2 Packet Transmission Timing

## 14.2.2.1 Data Transfer

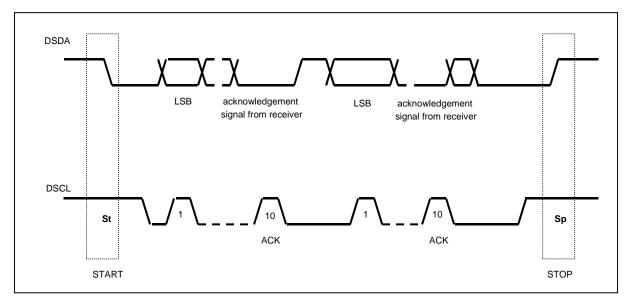



Figure 14.3 Data Transfer on the Twin Bus

## 14.2.2.2 Bit Transfer

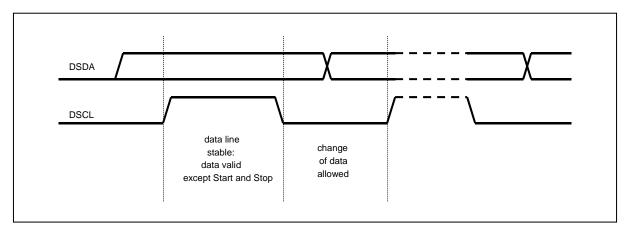
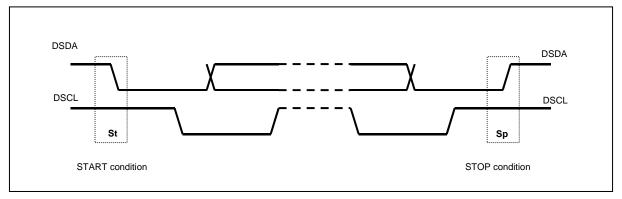




Figure 14.4 Bit Transfer on the Serial Bus



# 14.2.2.3 Start and Stop Condition



#### Figure 14.5 Start and Stop Condition

# 14.2.2.4 Acknowledge Bit

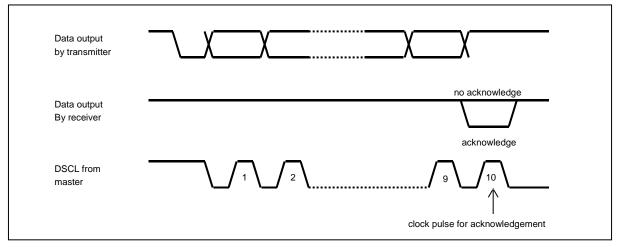



Figure 14.6 Acknowledge on the Serial Bus



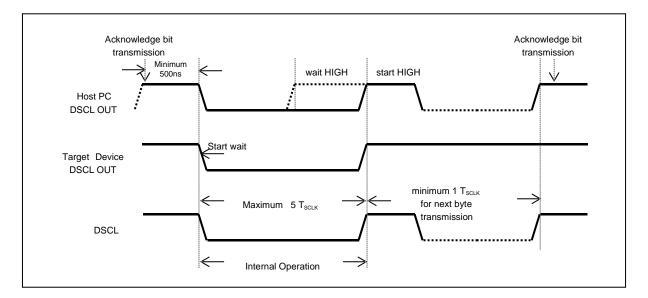
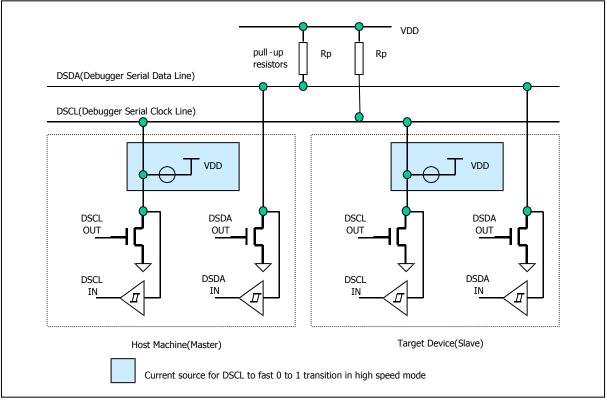




Figure 14.7 Clock Synchronization during Wait Procedure



# 14.2.3 Connection of Transmission



Two-pin interface connection uses open-drain (wire-AND bidirectional I/O).

Figure 14.8 Connection of Transmission

## 15. Flash Memory

## 15.1 Overview

## 15.1.1 Description

MC96F6432 incorporates flash memory to which a program can be written, erased, and overwritten while mounted on the board. The flash memory can be read by 'MOVC' instruction and it can be programmed in OCD, serial ISP mode or user program mode.

- Flash Size : 32kbytes
- Single power supply program and erase
- Command interface for fast program and erase operation
- Up to 100,000 program/erase cycles at typical voltage and temperature for flash memory



## 15.1.2 Flash Program ROM Structure

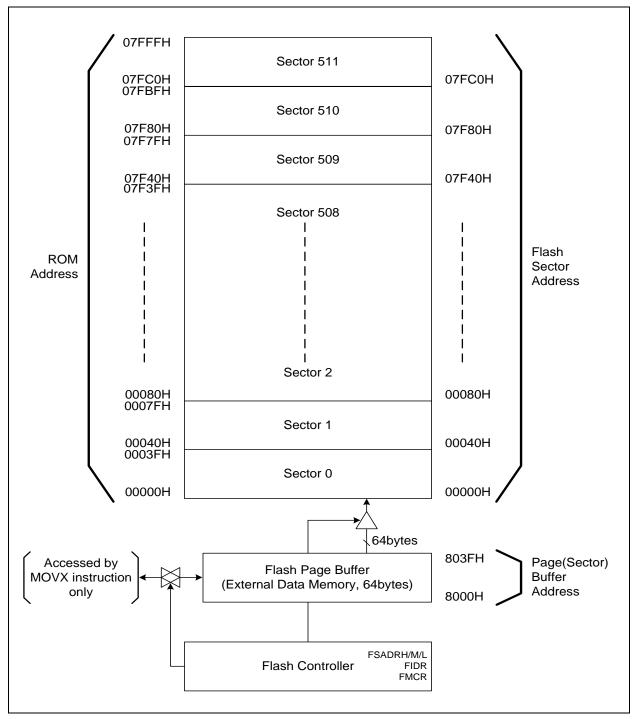



Figure 15.1 Flash Program ROM Structure

## 15.1.3 Register Map

Name	Address	Dir	Default	Description
FSADRH	FAH	R/W	00H	Flash Sector Address High Register
FSADRM	FBH	R/W	00H	Flash Sector Address Middle Register
FSADRL	FCH	R/W	00H	Flash Sector Address Low Register
FIDR	FDH	R/W	00H	Flash Identification Register
FMCR	FEH	R/W	00H	Flash Mode Control Register

### Table 15-1Flash Memory Register Map

# 15.1.4 Register Description for Flash Memory Control and Status

Flash control register consists of the flash sector address high register (FSADRH), flash sector address middle register (FSADRM), flash sector address low register (FSADRL), flash identification register (FIDR), and flash mode control register (FMCR). They are mapped to SFR area and can be accessed only in programming mode.



## 15.1.5 Register Description for Flash

#### FSADRH (Flash Sector Address High Register) : FAH

7	6	5	4	3	2	1	0	
-	-	-	-	FSADRH3	FSADRH2	FSADRH1	FSADRH0	
-	_	_	-	RW	RW	RW	RW	
						I	nitial value : 00	Н

FSADRH[3:0] Flash Sector Address High

#### FSADRM (Flash Sector Address Middle Register) : FBH

7	6	5	4	3	2	1	0
FSADRM7	FSADRM6	FSADRM5	FSADRM4	FSADRM3	FSADRM2	FSADRM1	FSADRM0
RW							
						I	nitial value : 00

FSADRM[7:0] Flash Sector Address Middle

#### FSADRL (Flash Sector Address Low Register) : FCH

7	6	5	4	3	2	1	0
FSADRL7	FSADRL6	FSADRL5	FSADRL4	FSADRL3	FSADRL2	FSADRL1	FSADRL0
RW							
							- 11 - 1

Initial value : 00H

FSADRL[7:0] Flash Sector Address Low

#### FIDR (Flash Identification Register) : FDH

7	6	5	4	3	2	1	0
FIDR7	FIDR6	FIDR5	FIDR4	FIDR3	FIDR2	FIDR1	FIDR0
RW							

Initial value : 00H

FIDR[7:0] FI

Flash Identification

Others No identification value

10100101 Identification value for a flash mode

(These bits are automatically cleared to logic '00H' immediately after one time operation)



MCR (Flash	Mode Contr	ol Register	) : FEH					
7	6	5	4		3	2	1	0
FMBUSY	_	-	_		_	FMCR2	FMCR1	FMCR0
R	_	-	_		-	RW	RW	RW
								Initial value : 0
	FM	IBUSY	Flash Mc	de Busy B	it. This bit	will be used	for only debu	gger.
			0	No effect	t when "1"	is written		
			1	Busy				
	FMCR[2:0]							on, the CPU is ess of the IE.7
			FMCR2	FMCR1	FMCR0	Descriptio	n	
			0	0	1	and start i	sh page buffe regardless of ear all 64byte	the FIDR
			0	1	0		sh sector eras ation when th 100101b'	
			0	1	1		sh sector write ation when th 100101b'	
			1	0	0		sh sector hard ation when th	

FIDR="10100101b'

Others Values: No operation

(These bits are automatically cleared to logic '00H' immediately after one time operation)



## 15.1.6 Serial In-System Program (ISP) Mode

Serial in-system program uses the interface of debugger which uses two wires. Refer to chapter 14 in details about debugger

### 15.1.7 Protection Area (User program mode)

MC96F6432 can program its own flash memory (protection area). The protection area can not be erased or programmed. The protection areas are available only when the PAEN bit is cleared to '0', that is, enable protection area at the configure option 2 if it is needed. If the protection area isn't enabled (PAEN ='1'), this area can be used as a normal program memory.

The size of protection area can be varied by setting of configure option 2.

#### Table 15-2 Protection Area size

Protection Area Size Select		Size of Protection Area	Address of Protection Area
PASS1	PASS0		
0	0	3.8k Bytes	0100H – 0FFFH
0	1	1.7k Bytes	0100H – 07FFH
1	0	768 Bytes	0100H – 03FFH
1	1	256 Bytes	0100H – 01FFH

NOTE) Refer to chapter 16 in configure option control.



### 15.1.8 Erase Mode

# The sector erase program procedure in user program mode

- 1. Page buffer clear (FMCR=0x01)
- 2. Write '0' to page buffer
- 3. Set flash sector address register (FSADRH/FSADRM/FSADRL).
- 4. Set flash identification register (FIDR).
- 5. Set flash mode control register (FMCR).
- 6. Erase verify

#### Program Tip – sector erase

	MOV NOP NOP NOP	FMCR,#0x01	;page buffer clear ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
	MOV MOV MOV MOV	A,#0 R0,#64 DPH,#0x80 DPL,#0	;Sector size is 64bytes
Pgbuf_clr:	MOVX INC	@DPTR,A DPTR	
	DJNZ	R0, Pgbuf_clr	;Write '0' to all page buffer
	MOV MOV MOV MOV NOP NOP	FSADRH,#0x00 FSADRM,#0x7F FSADRL,#0x40 FIDR,#0xA5 FMCR,#0x02	;Select sector 509 ;Identification value ;Start flash erase mode ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
	MOV MOV MOV MOV MOV	A,#0 R0,#64 R1,#0 DPH,#0x7F DPL,#0x40	;erase verify ;Sector size is 64bytes
Erase_verif	y: MOVC SUBB JNZ INC DJNZ	A,@A+DPTR A,R1 Verify_error DPTR R0, Erase_verify	



# The Byte erase program procedure in user program mode

- 1. Page buffer clear (FMCR=0x01)
- 2. Write '0' to page buffer
- 3. Set flash sector address register (FSADRH/FSADRM/FSADRL).
- 4. Set flash identification register (FIDR).
- 5. Set flash mode control register (FMCR).
- 6. Erase verify

### Program Tip – byte erase

Mov Nop Nop Nop	FMCR,#0x01	;page buffer clear ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
MOV MOV MOV MOVX	A,#0 DPH,#0x80 DPL,#0 @DPTR,A	
MOV MOV MOVX	DPH,#0x80 DPL,#0x05 @DPTR,A	;Write '0' to page buffer
MOV MOV MOV MOV NOP NOP NOP	FSADRH,#0x00 FSADRM,#0x7F FSADRL,#0x40 FIDR,#0xA5 FMCR,#0x02	;Select sector 509 ;Identification value ;Start flash erase mode ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
MOV MOV MOV MOVC SUBB JNZ	A,#0 R1,#0 DPH,#0x7F DPL,#0x40 A,@A+DPTR A,R1 Verify_error	;erase verify ;0x7F40 = 0 ?
MOV MOV MOV MOVC SUBB JNZ	A,#0 R1,#0 DPH,#0x7F DPL,#0x45 A,@A+DPTR A,R1 Verify_error	;0x7F45 = 0 ?



## 15.1.9 Write Mode

# The sector Write program procedure in user program mode

- 1. Page buffer clear (FMCR=0x01)
- 2. Write data to page buffer
- 3. Set flash sector address register (FSADRH/FSADRM/FSADRL).
- 4. Set flash identification register (FIDR).
- 5. Set flash mode control register (FMCR).
- 6. Erase verify

#### Program Tip – sector write

	MOV NOP NOP NOP	FMCR,#0x01	;page buffer clear ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
	MOV MOV MOV MOV	A,#0 R0,#64 DPH,#0x80 DPL,#0	;Sector size is 64bytes
Pgbuf_WR:	MOVX INC INC DJNZ	@DPTR,A A DPTR R0, Pgbuf_WR	;Write data to all page buffer
	MOV MOV MOV MOV NOP NOP	FSADRH,#0x00 FSADRM,#0x7F FSADRL,#0x40 FIDR,#0xA5 FMCR,#0x03	;Select sector 509 ;Identification value ;Start flash write mode ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
	MOV MOV MOV MOV MOV	A,#0 R0,#64 R1,#0 DPH,#0x7F DPL,#0x40	;write verify ;Sector size is 64bytes
Write_verify	MOVC SUBB JNZ INC INC DJNZ	A,@A+DPTR A,R1 Verify_error R1 DPTR R0, Write_verify	



# The Byte Write program procedure in user program mode

- 1. Page buffer clear (FMCR=0x01)
- 2. Write data to page buffer
- 3. Set flash sector address register (FSADRH/FSADRM/FSADRL).
- 4. Set flash identification register (FIDR).
- 5. Set flash mode control register (FMCR).
- 6. Erase verify

### Program Tip – byte write

MOV NOP NOP NOP	FMCR,#0x01	;page buffer clear ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
MOV MOV MOV MOVX	A,#5 DPH,#0x80 DPL,#0 @DPTR,A	;Write data to page buffer
MOV MOV MOV MOVX	A,#6 DPH,#0x80 DPL,#0x05 @DPTR,A	;Write data to page buffer
MOV MOV MOV MOV NOP NOP	FSADRH,#0x00 FSADRM,#0x7F FSADRL,#0x40 FIDR,#0xA5 FMCR,#0x03	;Select sector 509 ;Identification value ;Start flash write mode ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.
MOV MOV MOV MOVC SUBB JNZ	A,#0 R1,#5 DPH,#0x7F DPL,#0x40 A,@A+DPTR A,R1 Verify_error	;write verify ;0x7F40 = 5 ?
MOV MOV MOV MOVC SUBB JNZ	A,#0 R1,#6 DPH,#0x7F DPL,#0x45 A,@A+DPTR A,R1 Verify_error	;0x7F45 = 6 ?



## 15.1.10 Read Mode

### The Reading program procedure in user program mode

1. Load receive data from flash memory on MOVC instruction by indirectly addressing mode.

Program Tip – reading

MOV	A,#0	
MOV	DPH,#0x7F	
MOV	DPL,#0x40	;flash memory address
MOVC	A,@A+DPTR	;read data from flash memory

## 15.1.11 Hard Lock Mode

### The Reading program procedure in user program mode

- 1. Set flash identification register (FIDR).
- 2. Set flash mode control register (FMCR).

#### Program Tip - reading

MOV	FIDR,#0xA5
MOV	FMCR,#0x04
NOP	
NOP	
NOP	

;Identification value ;Start flash hard lock mode ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed. ;Dummy instruction, This instruction must be needed.



# **16. Configure Option**

# **16.1 Configure Option Control**

The data for configure option should be written in the configure option area (003EH – 003FH) by programmer (Writer tools).

#### CONFIGURE OPTION 1 : ROM Address 003FH

7	6	5	4	3	2	1	0
R_P	HL	_	_	_	_	_	RSTS
	·						nitial value : 00H
	R_P		Read Protection	on			
			0 Disa	able "Read pro	otection"		
			1 Ena	ble "Read pro	tection"		
	HL	I	Hard-Lock				
			0 Disa	able "Hard-loc	k"		
			1 Ena	ble "Hard-locl	κ"		
	RST	S	RESETB Sele	ct			
			0 P55	port			
			1 RE	SETB port with	n a pull-up res	istor	

#### CONFIGURE OPTION 2: ROM Address 003EH

7	6	5	4	3	2	1	0
-	-	-	Ι	-	PAEN	PASS1	PASS0

Initial value : 00H

n Area Enable/Disable Disable Protection (Erasable by instruction)		
)		
)))		



# **17. APPENDIX**

## A. Instruction Table

Instructions are either 1, 2 or 3 bytes long as listed in the 'Bytes' column below.

Each instruction takes either 1, 2 or 4 machine cycles to execute as listed in the following table. 1 machine cycle comprises 2 system clock cycles.

ARITHMETIC					
Mnemonic	Description	Bytes	Cycles	Hex code	
ADD A,Rn	Add register to A	1	1	28-2F	
ADD A,dir	Add direct byte to A	2	1	25	
ADD A,@Ri	Add indirect memory to A	1	1	26-27	
ADD A,#data	Add immediate to A	2	1	24	
ADDC A,Rn	Add register to A with carry	1	1	38-3F	
ADDC A,dir	Add direct byte to A with carry	2	1	35	
ADDC A,@Ri	Add indirect memory to A with carry	1	1	36-37	
ADDC A,#data	Add immediate to A with carry	2	1	34	
SUBB A,Rn	Subtract register from A with borrow	1	1	98-9F	
SUBB A,dir	Subtract direct byte from A with borrow	2	1	95	
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	1	96-97	
SUBB A,#data	Subtract immediate from A with borrow	2	1	94	
INC A	Increment A	1	1	04	
INC Rn	Increment register	1	1	08-0F	
INC dir	Increment direct byte	2	1	05	
INC @Ri	Increment indirect memory	1	1	06-07	
DEC A	Decrement A	1	1	14	
DEC Rn	Decrement register	1	1	18-1F	
DEC dir	Decrement direct byte	2	1	15	
DEC @Ri	Decrement indirect memory	1	1	16-17	
INC DPTR	Increment data pointer	1	2	A3	
MUL AB	Multiply A by B	1	4	A4	
DIV AB	Divide A by B	1	4	84	
DA A	Decimal Adjust A	1	1	D4	

LOGICAL						
Mnemonic	Description	Bytes	Cycles	Hex code		
ANL A,Rn	AND register to A	1	1	58-5F		
ANL A,dir	AND direct byte to A	2	1	55		
ANL A,@Ri	AND indirect memory to A	1	1	56-57		
ANL A,#data	AND immediate to A	2	1	54		
ANL dir,A	AND A to direct byte	2	1	52		
ANL dir,#data	AND immediate to direct byte	3	2	53		
ORL A,Rn	OR register to A	1	1	48-4F		
ORL A,dir	OR direct byte to A	2	1	45		
ORL A,@Ri	OR indirect memory to A	1	1	46-47		
ORL A,#data	OR immediate to A	2	1	44		
ORL dir,A	OR A to direct byte	2	1	42		
ORL dir,#data	OR immediate to direct byte	3	2	43		
XRL A,Rn	Exclusive-OR register to A	1	1	68-6F		
XRL A,dir	Exclusive-OR direct byte to A	2	1	65		
XRL A, @Ri	Exclusive-OR indirect memory to A	1	1	66-67		

# MC96F6432



XRL A,#data	Exclusive-OR immediate to A	2	1	64
XRL dir,A	Exclusive-OR A to direct byte	2	1	62
XRL dir,#data	Exclusive-OR immediate to direct byte	3	2	63
CLR A	Clear A	1	1	E4
CPL A	Complement A	1	1	F4
SWAP A	Swap Nibbles of A	1	1	C4
RL A	Rotate A left	1	1	23
RLC A	Rotate A left through carry	1	1	33
RR A	Rotate A right	1	1	03
RRC A	Rotate A right through carry	1	1	13

DATA TRANSFER						
Mnemonic	Description	Bytes	Cycles	Hex code		
MOV A,Rn	Move register to A	1	1	E8-EF		
MOV A,dir	Move direct byte to A	2	1	E5		
MOV A,@Ri	Move indirect memory to A	1	1	E6-E7		
MOV A,#data	Move immediate to A	2	1	74		
MOV Rn,A	Move A to register	1	1	F8-FF		
MOV Rn,dir	Move direct byte to register	2	2	A8-AF		
MOV Rn,#data	Move immediate to register	2	1	78-7F		
MOV dir,A	Move A to direct byte	2	1	F5		
MOV dir,Rn	Move register to direct byte	2	2	88-8F		
MOV dir,dir	Move direct byte to direct byte	3	2	85		
MOV dir,@Ri	Move indirect memory to direct byte	2	2	86-87		
MOV dir,#data	Move immediate to direct byte	3	2	75		
MOV @Ri,A	Move A to indirect memory	1	1	F6-F7		
MOV @Ri,dir	Move direct byte to indirect memory	2	2	A6-A7		
MOV @Ri,#data	Move immediate to indirect memory	2	1	76-77		
MOV DPTR,#data	Move immediate to data pointer	3	2	90		
MOVC A,@A+DPTR	Move code byte relative DPTR to A	1	2	93		
MOVC A,@A+PC	Move code byte relative PC to A	1	2	83		
MOVX A,@Ri	Move external data(A8) to A	1	2	E2-E3		
MOVX A,@DPTR	Move external data(A16) to A	1	2	E0		
MOVX @Ri,A	Move A to external data(A8)	1	2	F2-F3		
MOVX @DPTR,A	Move A to external data(A16)	1	2	F0		
PUSH dir	Push direct byte onto stack	2	2	C0		
POP dir	Pop direct byte from stack	2	2	D0		
XCH A,Rn	Exchange A and register	1	1	C8-CF		
XCH A,dir	Exchange A and direct byte	2	1	C5		
XCH A,@Ri	Exchange A and indirect memory	1	1	C6-C7		
XCHD A,@Ri	Exchange A and indirect memory nibble	1	1	D6-D7		

BOOLEAN					
Mnemonic	Description	Bytes	Cycles	Hex code	
CLR C	Clear carry	1	1	C3	
CLR bit	Clear direct bit	2	1	C2	
SETB C	Set carry	1	1	D3	
SETB bit	Set direct bit	2	1	D2	
CPL C	Complement carry	1	1	B3	
CPL bit	Complement direct bit	2	1	B2	
ANL C,bit	AND direct bit to carry	2	2	82	
ANL C,/bit	AND direct bit inverse to carry	2	2	B0	



ORL C,bit	OR direct bit to carry	2	2	72
ORL C,/bit	OR direct bit inverse to carry	2	2	A0
MOV C,bit	Move direct bit to carry	2	1	A2
MOV bit,C	Move carry to direct bit	2	2	92

BRANCHING					
Mnemonic	Description	Bytes	Cycles	Hex code	
ACALL addr 11	Absolute jump to subroutine	2	2	11→F1	
LCALL addr 16	Long jump to subroutine	3	2	12	
RET	Return from subroutine	1	2	22	
RETI	Return from interrupt	1	2	32	
AJMP addr 11	Absolute jump unconditional	2	2	01→E1	
LJMP addr 16	Long jump unconditional	3	2	02	
SJMP rel	Short jump (relative address)	2	2	80	
JC rel	Jump on carry = 1	2	2	40	
JNC rel	Jump on carry = 0	2	2	50	
JB bit,rel	Jump on direct bit = 1	3	2	20	
JNB bit,rel	Jump on direct bit = 0	3	2	30	
JBC bit,rel	Jump on direct bit = 1 and clear	3	2	10	
JMP @A+DPTR	Jump indirect relative DPTR	1	2	73	
JZ rel	Jump on accumulator = 0	2	2	60	
JNZ rel	Jump on accumulator ≠ 0	2	2	70	
CJNE A,dir,rel	Compare A, direct jne relative	3	2	B5	
CJNE A,#d,rel	Compare A,immediate jne relative	3	2	B4	
CJNE Rn,#d,rel	Compare register, immediate jne relative	3	2	B8-BF	
CJNE @Ri,#d,rel	Compare indirect, immediate jne relative	3	2	B6-B7	
DJNZ Rn,rel	Decrement register, jnz relative	3	2	D8-DF	
DJNZ dir,rel	Decrement direct byte, jnz relative	3	2	D5	

MISCELLANEOUS					
Mnemonic	Description	Bytes	Cycles	Hex code	
NOP	No operation	1	1	00	

ADDITIONAL INSTRUCTIONS (selected through EO[7:4])				
Mnemonic	Description	Bytes	Cycles	Hex code
MOVC @(DPTR++),A	M8051W/M8051EW-specific instruction supporting software download into program memory	1	2	A5
TRAP	Software break command	1	1	A5

In the above table, an entry such as E8-EF indicates a continuous block of hex opcodes used for 8 different registers, the register numbers of which are defined by the lowest three bits of the corresponding code. Non-continuous blocks of codes, shown as  $11 \rightarrow F1$  (for example), are used for absolute jumps and calls, with the top 3 bits of the code being used to store the top three bits of the destination address.

The CJNE instructions use the abbreviation #d for immediate data; other instructions use #data.