


MODEL NO: <u>DS925W</u> Ecn:



Huaqiang Square, Futian District, Shenzhen, D Block Q1J025

TEL:13424312544

FAX:0755-23956023

http://www.ds142.cn



MODEL NO: <u>DS925W</u> Ecn: Page:20f8

#### **⊘Notes**:

- 1.All dimensions are in millimeter.
- 2.General Tolerance: ± 0.2mm
- 3. Lead spacing is measured where the lead emerge from the package.
- 4. Above specification may be changed without notice. TAT will reserve authority on material change for above specification.
- 5. These specification sheets include materials protected under copyright of TAT corporation. Please don't reproduce or cause anyone to reproduce them without TAT's consent.
- 6. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. TAT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.

#### Descriptions:

The DS925W (Slot Optical Switch) is a gallium arsenide infrared emitting diode which is coupled with a silicon photo transistor in a plastic housing. The packaging system is designed to optimizes the mechanical resolution, coupling efficiency, and insulates ambient light. The slot in the housing a provides a means of interrupting the signal with printer, scanner, copier, or other opaque material, switching the output from an "ON" to OFF" state.

#### Features:

- · Wide gap between light emitter and detector(5.0mm)
- · High sensing accuracy
- · PWB mounting type package

#### Applications:

- · Copier
- · Printer
- · Facsimile
- · Ticket vending machine
- · Opto-electronic switch



# MODEL NO: <u>DS925W</u>

Ecn: Page:3of8

## $\blacksquare$ Absolute Maximum Ratings (Ta=25 $^{\circ}$ C)

|        | Parameter                                                                    | Symbol                        | Ratings | Unit                 |
|--------|------------------------------------------------------------------------------|-------------------------------|---------|----------------------|
|        | Power Dissipation at(or below)<br>25℃ Free Air Temperature                   | Pd                            | 75      | mW                   |
| Input  | Reverse Voltage                                                              | $V_{\scriptscriptstyle R}$    | 5       | V                    |
|        | Forward Current                                                              | $I_{\scriptscriptstyle  m F}$ | 50      | mA                   |
|        | Peak Forward Current Pulse width $\leq 100  \mu  \mathrm{s}$ , Duty cycle=1% | $I_{	ext{FP}}$                | 1       | А                    |
|        | Collector Power Dissipation                                                  | $P_{C}$                       | 75      | mW                   |
| Output | Collector Current                                                            | I <sub>C</sub>                | 20      | mA                   |
|        | Collector-Emitter Voltage                                                    | V <sub>CEO</sub>              | 30      | V                    |
|        | Emitter-Collector Voltage                                                    | $V_{\text{ECO}}$              | 5       | V                    |
| Operat | ing Temperature                                                              | Topr                          | -25~+85 | $^{\circ}\mathbb{C}$ |
| Storag | e Temperature                                                                | Tstg                          | -40~+85 | $^{\circ}$ C         |
|        | oldering Temperature<br>inch from body for 5 seconds)                        | Tsol                          | 260     | $^{\circ}$           |

## ■ Electro-Optical Characteristics ( $Ta=25^{\circ}C$ )

| Parameter                  |                           | Symbol                              | Min. | Тур. | Max. | Unit       | Condition                                                                                  |
|----------------------------|---------------------------|-------------------------------------|------|------|------|------------|--------------------------------------------------------------------------------------------|
| Input                      | Forward Voltage           | $V_{\scriptscriptstyle F}$          | _    | 1.2  | 1.5  | V          | $I_F = 20 \text{mA}$                                                                       |
|                            | Reverse Current           | $I_{\scriptscriptstyle R}$          | _    | _    | 10   | $\mu$ A    | $V_R = 5V$                                                                                 |
|                            | Peak Wavelength           | λ,                                  | _    | 940  | _    | nm         | $I_F = 20 \text{mA}$                                                                       |
| Output                     | Collector Dark<br>Current | $I_{\scriptscriptstyle{	ext{CEO}}}$ | -    | -    | 100  | nA         | $V_{CE} = 20V$<br>$Ee = 0mW/cm^2$                                                          |
| Transfer<br>Characteristic | C-E Saturation<br>Voltage | V <sub>CE</sub> (sat)               | _    | _    | 0.4  | V          | $I_c=0.5mA$ $Ee=10mW/cm^2$                                                                 |
|                            | Collector Current         | I <sub>C</sub> (ON)                 | 0.5  | -    | _    | mA         | $V_{CE} = 5V$ $I_F = 20mA$                                                                 |
|                            | Rise time                 | t <sub>r</sub>                      | -    | 15   | _    | $\mu \sec$ | $V_{CE} = 5V$                                                                              |
|                            | Fall time                 | t <sub>f</sub>                      | _    | 15   | _    | $\mu \sec$ | $	extsf{I}_{	extsf{c}}	extsf{=}1	extsf{mA} 	extsf{R}_{	extsf{L}}	extsf{=}1	extsf{K}\Omega$ |



## MODEL NO: DS925W

# ■ Typical Characteristics For IR

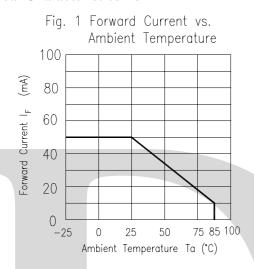



Fig. 3 Peak Emission Wavelength vs.
Ambient Temperature

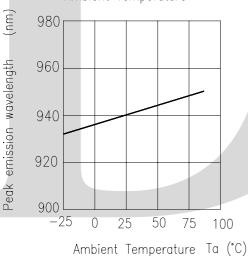



Fig. 5 Forward Voltage vs.

Ambient Temperature

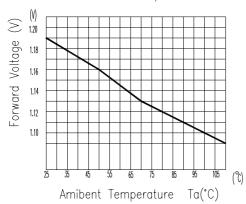



Fig. 2 Spectral Distribution

Ecn:

Page:4of8

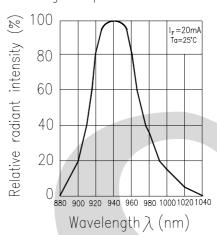



Fig. 4 Forward Current vs. Forward Voltage

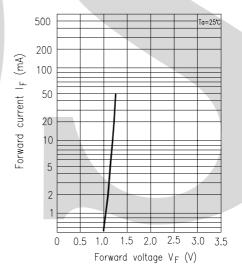
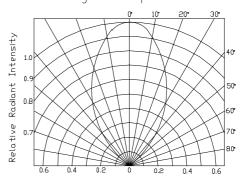




Fig. 6 Relative Radiant Intensity vs Angular Displacement





## MODEL NO: DS925W

#### ■ Typical Characteristics For PT

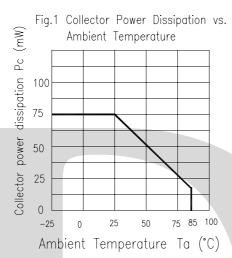
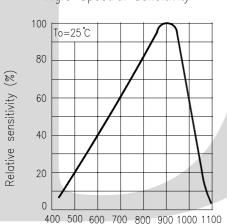




Fig.3 Spectral Sensitivity



Wavelength  $\lambda$  (nm)

### Fig.2 Collector Dark Current vs. Ambient Temperature 10 -6 5 Collector dark current I<sub>CEO</sub>(A) 2 10<sup>-7</sup> 5 2 10<sup>-8</sup> 5 10 -9 5 2 10 <sup>-10</sup>

Ecn:

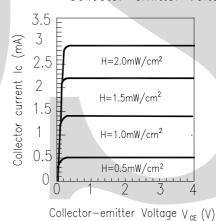

Page:5of8

Fig.4 Collector Current vs. Collector-emitter Voltage

50

Ambient Temperature Ta (°C)

100



#### Typical Characteristics For ITR

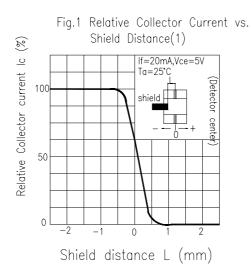
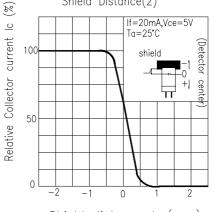




Fig.2 Relative Collector Current vs. Shield Distance(2)



Shield distance L (mm)



# MODEL NO: DS925W

Reliability test item and condition

The reliability of products shall be satisfied with item listed below:

Confidence level :90%

LTPD:10%

| Parameter                  | Failure<br>Judgement<br>Criteria                                                                                                                                                                                                                                                                                                                               | Samples(n) Defective(c)                                                                                                                        |             |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Temperature Cycle          | Evaluates product's ability to withstand exposure to high temperature, low temperature, and temperature variation between two limit temperature. Standard test Condition: $ 85^{\circ}\text{C} \sim 25^{\circ}\text{C} \sim -55^{\circ}\text{C} \sim 25^{\circ}\text{C} $ $ \downarrow \qquad \downarrow \qquad \downarrow $ $ 30\text{min 5min 30min 5min } $ | $I_R \ge U \times 2$ $I_C(on) \le L \times 0.8$ $V_F \ge U \times 1.2$ $U : Upper$ $specification$ $limit$ $L : Lower$ $specification$ $limit$ | n =22 ' c=0 |
| Thermal Shock              | Evaluates product's ability to withstand rapid temperature change Standard test  Condition:  85°C ~ -55°C 5min 5min 50cycle                                                                                                                                                                                                                                    |                                                                                                                                                | n =22 ' c=0 |
| High Temperature Storage   | Evaluates product's ability to withstand prolonged storage at high temperature Standard test Condition:  Temperature: 100 °C Time: 1000hrs                                                                                                                                                                                                                     |                                                                                                                                                | n =22 ' c=0 |
| Low Temperature<br>Storage | Evaluates product's ability to withstand prolonged storage at low temperature Standard test Condition:  Temperature: -55 °C Time: 1000hrs                                                                                                                                                                                                                      |                                                                                                                                                | n =22 , c=0 |

Page:6of8

Ecn:



MODEL NO: DS925W Ecn: Page:7of8

| Parameter           | Purpose & Condition            | Failure                   | Samples(n)           |
|---------------------|--------------------------------|---------------------------|----------------------|
|                     | 1                              | Judgement<br>Criteria     | Defective(c)         |
| Operating Life Test | Evaluates product's endurance  |                           | , ,                  |
| Operating Life Test |                                | $I_R \ge U \times 2$      | $n = 22 \cdot c = 0$ |
|                     | to prolonged electrical or     | $Ic(on) \le L \times 0.8$ |                      |
|                     | temperature stresses. Standard | $V_F \ge U \times 1.2$    |                      |
|                     | test Condition:                |                           |                      |
|                     | $V_{CE}=5V$                    |                           |                      |
|                     | $I_F=20mA$                     | U: Upper                  |                      |
|                     | Time: 1000hrs                  | specification             |                      |
| High Temperature    | Evaluates product's ability to | limit                     | n =22 , c=0          |
|                     | withstand prolonged storage    | L: Lower                  |                      |
| High Humidity       | at high temperature and high   | specification             |                      |
|                     | humidity. Standard test        | limit                     |                      |
|                     | Condition:                     |                           |                      |
|                     | Temperature: 85°C              |                           |                      |
|                     | Relative humidity:85%          |                           |                      |
|                     | Time: 1000hrs                  |                           |                      |
| Soldering Heat      | Evaluates product's ability to |                           | n =22 , c=0          |
|                     | withstand soldering heat       |                           |                      |
|                     | Standard test conditions       |                           |                      |
|                     | Solder temperature : 260±5°C   |                           |                      |
|                     | Solder time: 10 seconds        |                           |                      |

# Supplements

# 1.Parts

(1) Chip

| Type | Material | Peak Wavelength |
|------|----------|-----------------|
| DS   | GaAs     | 940 nm          |
| DT   | Silicon  | 860 nm          |

## (2)Material

| Type     | Lead frame | Wire | Part Package | Holder |
|----------|------------|------|--------------|--------|
| Material | SPCC       | Gold | Epoxy        | PPO    |