

330mW Stereo Audio Power Amp With Shutdown

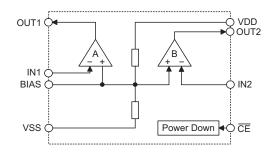
Features

- Operating voltage: 2.4V~6.0V
- Very low standby current 0.5μA (Typ.)
- · High signal-to-noise ratio
- · High slew rate
- Output power 330mW at 10% THD+N into 8Ω
- · Excellent power supply ripple rejection

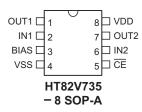
- Low power consumption
- Wide temperature operating range
- · Direct drive speaker
- · Shutdown function
- · 8-pin SOP package

Applications

- CD ROM DVD player
- · Notebook/Desktop PC
- · Portable Audio Device


- · Headphone Amplifier
- · Microphone Pre-amplifier
- Discman/MP3

General Description


HT82V735 is a class AB stereo earphone driver designed for portable digital audio application. Pin assignments and application circuits are compatible with LM4880 which is suitable for effective low cost applications. The HT82V735 can deliver a maximum of 330mW

Output power to an 8Ω load with less than 10% (THD+N) from a 5V power supply. The very low standby current in shutdown mode contributes to the reduction of power consumption of battery-powered equipments. It provides 8-SOP package.

Block Diagram

Pin Assignment

Pin Description

Pin No.	Pin Name	I/O	Description		
1	OUT1	0	Channel 1 output pin		
2	IN1	1	Channel 1 Audio input		
3	BIAS	ı	Supports a voltage driver for internal bias		
4	VSS	_	egative power supply, ground		
5	CE	1	ower down mode when held high, I (power down) =1µA		
6	IN2	1	hannel 2 Audio input		
7	OUT2	0	Channel 2 output pin		
8	VDD	_	Positive power supply		

Absolute Maximum Ratings

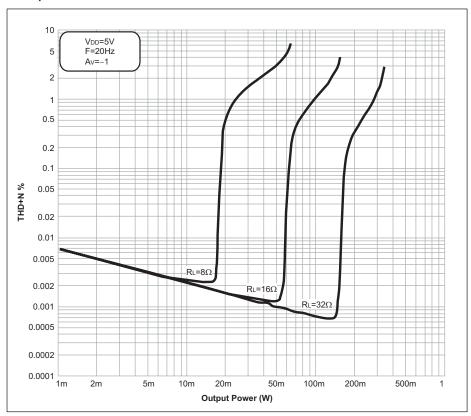
Supply VoltageV _{SS} -0.3V to V _{SS} +6V	Storage Temperature50°C to 125°C
Input VoltageV _{SS} -0.3V to V _{DD} +0.3V	Operating Temperature–20°C to 70°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

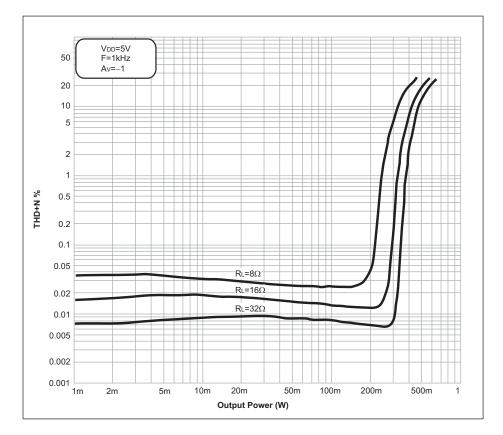
Electrical Characteristics

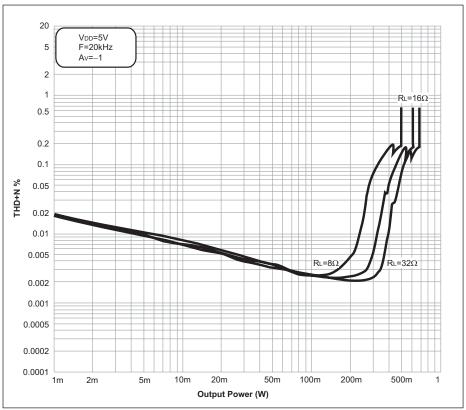
 V_{SS} =0V; f_i =1kHz; R_L =32 Ω ; Ta=25 $^{\circ}$ C

C	Demonstration	Test Conditions			_			
Symbol	Parameter	V_{DD}	Conditions	Min.	Тур.	Max.	Unit	
Supplies								
V_{DD}	Supply Voltage	_	_	2.4	_	6	V	
I _{DD}	Supply Current	5V	No load	_	10		mA	
I _{PD}	Power-down Current	5V	_	_	1	_	μА	
D.C. Charac	cteristics							
V _{I(OS)}	Input Offset Voltage	5V	_	_	10	_	mV	
Io	Maximum Output Current	5V	(THD+N)/S<0.1%	_	62		mA	
Ro	Output Resistance	5V	_	_	230	_	mΩ	
			R _L =8Ω	0.66	_	3	V	
Vo	Output Voltage Swing	5V	R _L =16Ω	0.38	_	3.15	V	
			R _L =32Ω	0.18	_	3.29	V	
PSRR	Power Supply Rejection Ratio		$C_S = 2.2 \mu F, \\ V_{RIPPLE} = 200 V_{RMS}, \\ f = 120 Hz$	_	66	_	dB	
X _{TALK}	Channel Separation	5V	$\begin{aligned} & \text{P}_{\text{O}}\text{=}200\text{mW}, \text{R}_{\text{L}}\text{=}8\Omega, \\ & \text{C}_{\text{B}}\text{=}2.2\mu\text{F} \end{aligned}$	_	85	_	dB	
A.C. Charac	cteristics							
(THD+N)/S	Total Harmonic Distortion Plus Noise to Signal Ratio	5V	P_O =200mW, R_L =8 Ω , f=1kHz	_	0.03	_		
			P_O =120mW, R_L =16 Ω , f=1kHz	_	0.01	_	%	
			P_O =75mW, R_L =32 Ω , f=1kHz	_	0.01	_		
		3.3V	P_O =30mW, R_L =32 Ω , f=1kHz	_	0.01	_		
			(THD+N)/S=0.1%, f=1kHz	_	_	_		
			R _L =8Ω	_	240	_		
			R _L =16Ω	_	160	_		
D	0.41.		R _L =32Ω	_	90	_		
P _O	Output Power	5V	(THD+N)/S=10%, f=1kHz	_	_	_	mW 	
			R _L =8Ω	_	330	_		
			R _L =16Ω	_	200	_		
			R _L =32Ω		110	_		

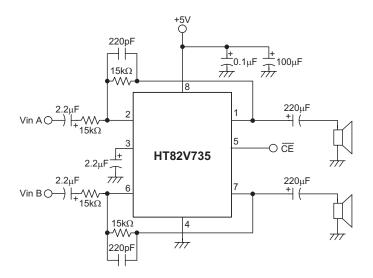

Rev. 1.10 2 February 18, 2004

Symbol	Parameter		Test Conditions		Trees	Max.	Unit
Syllibol	Farameter	V_{DD}	Conditions	Min.	Тур.	wax.	Onit
S/N	Signal to Noise Ratio	5V	V_{IN} =1 $_{VRMS}$, R_L =8 Ω		92	_	dB
SR	Slew Rate	5V	_	_	3	_	V/μs
ATT	Power-down Attenuation		1kHz, 0dB	_	70	_	dB

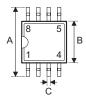

Typical Performance Characteristics


THD+N vs. Output Power

Rev. 1.10 3 February 18, 2004



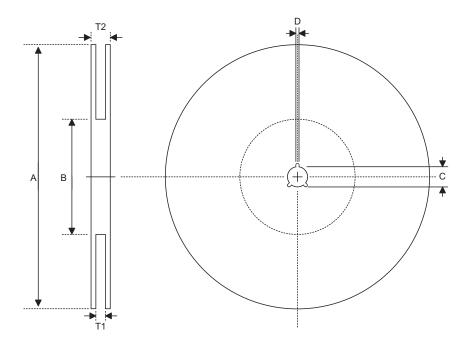
Application Circuits



Rev. 1.10 5 February 18, 2004

Package Information

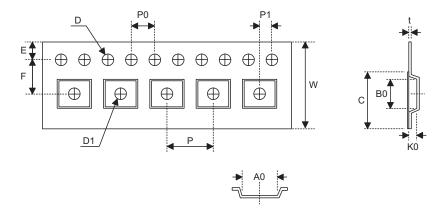
8-pin SOP (150mil) Outline Dimensions



Cymphal	Dimensions in mil					
Symbol	Min.	Nom.	Max.			
А	228	_	244			
В	149	_	157			
С	14	_	20			
C'	189	_	197			
D	53	_	69			
E	_	50	_			
F	4	_	10			
G	22	_	28			
Н	4	_	12			
α	0°	_	10°			

Product Tape and Reel Specifications

Reel Dimensions



SOP 8N

Symbol	Description	Dimensions in mm
Α	Reel Outer Diameter	330±1.0
В	Reel Inner Diameter	62±1.5
С	Spindle Hole Diameter	13.0+0.5 -0.2
D	Key Slit Width	2.0±0.5
T1	Space Between Flange	12.8+0.3 -0.2
T2	Reel Thickness	18.2±0.2

Carrier Tape Dimensions

SOP 8N

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	12.0+0.3 -0.1
Р	Cavity Pitch	8.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	5.5±0.1
D	Perforation Diameter	1.55±0.1
D1	Cavity Hole Diameter	1.5+0.25
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	6.4±0.1
В0	Cavity Width	5.20±0.1
K0	Cavity Depth	2.1±0.1
t	Carrier Tape Thickness	0.3±0.05
С	Cover Tape Width	9.3

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan

Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan

Tel: 886-2-2655-7070 Fax: 886-2-2655-7373

Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233

Tel: 021-6485-5560 Fax: 021-6485-0313 http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office) 43F, SEG Plaza, Shen Nan Zhong Road, Shenzhen, China 518031

Tel: 0755-8346-5589 Fax: 0755-8346-5590 ISDN: 0755-8346-5591

Holtek Semiconductor Inc. (Beijing Sales Office)

Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031

Tel: 010-6641-0030, 6641-7751, 6641-7752

Fax: 010-6641-0125

Holmate Semiconductor, Inc. (North America Sales Office)

46712 Fremont Blvd., Fremont, CA 94538

Tel: 510-252-9880 Fax: 510-252-9885 http://www.holmate.com

Copyright © 2004 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.

Rev. 1.10 9 February 18, 2004