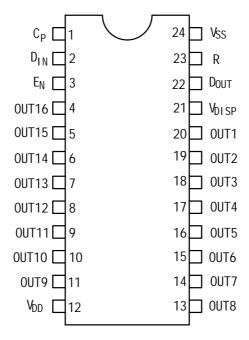


静态 VFD 驱动电路

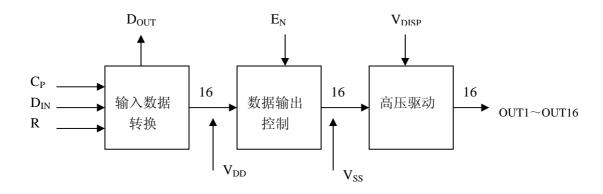

概述

TX16210 是一种负电源型 VFD 驱动电路,可用作 VFD 显示系统中 CPU 与 VFD 之间的接口电路,采用 16 位并行输出,使用灵活,通用性强。

功能特点

- 三电源供电, V_{DD}=5V, V_{SS}=0V。
- $V_{DISP} = -30V_{\circ}$
- 串行输入
- 16位的并行输出
- 并行输出端采用高压结构,可直接驱动 VFD。
- 串行输出端,以便扩展使用,增强其通用性。
- 采用外接时钟、清零端、输出控制,以便使用中与 CPU 相匹配。

管脚排列图

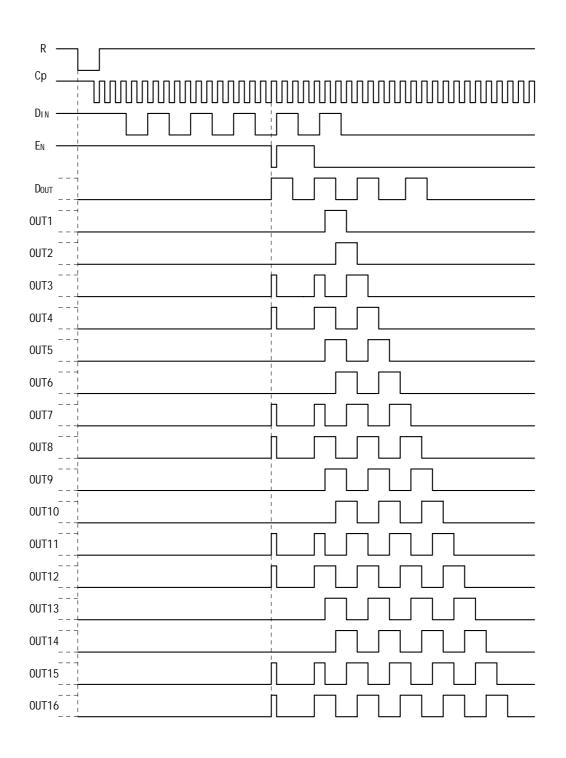


管脚说明

管脚号	符号	管脚名	1/0	说 明
1	C_P	输入时钟	I	下降沿时输入串行数据,上升沿时输出串行数据。
2	$\mathrm{D_{IN}}$	串行数据输入端	Ι	时钟下降沿时输入串行数据
3	$\mathrm{E_{N}}$	数据输出控制端	I	低电平有效,允许并行数据输出。低电平宽度不超过一个时钟周期,其下降沿要在时钟上升沿之后,上升沿要在时钟下降沿之前。使用中通过控制 E _N 有效信号输入时间及扩展使用来实现多种并行输出。
4~11 13~20	0UT16∼0UT1	并行数据输出	0	在 E _N 为低电平时,并行数据输出。
12	V_{DD}	逻辑电源		5V
21	V_{DISP}	VFD 驱动高压	I	电压值可达-30V
22	$\mathrm{D}_{\mathrm{OUT}}$	串行数据输出	0	时钟上升沿时输出串行数据
23	R	清零信号	I	低电平有效, 须加10K上拉电阻
24	V _{SS}	逻辑地		与系统地相连

功能框图

该电路与 16312 属于同系列产品,电路由三部分组成,即输入数据转换部分、数据输出 控制部分、高压驱动部分。



功能说明

输入数据转换部分由 16 个带复位端的基本触发器组成,主要完成串行输入/并行输出转换功能,外接的复位端可以保证使用中与 CPU 同步清零。数据输出控制部分为带使能端的控制器。根据不同的的 VFD 屏,通过调节 E_N 与 C_P 的关系来控制数据的输出时间,即可以实现任意位的并行输出(即电路可以扩展)。使用中要严格控制 E_N 与 C_P 的关系。

时序图

极限参数

1. 工作条件(Ta=-20℃~+70℃, V_{ss}=0V)

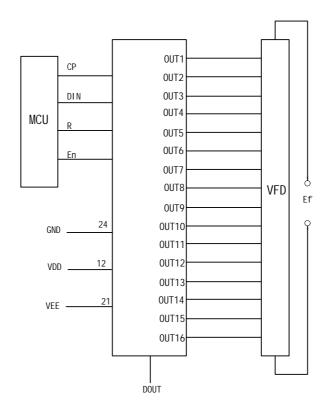
参 数	符号	最小值	典型值	最大值	单 位
工作电压	V_{DD}	4.5	5	5.5	V
高电平输入电压	V_{IH}	$0.7~\mathrm{V_{DD}}$	_	$V_{ m DD}$	V
低电平输入电压	V_{IL}	0		$0.3~\mathrm{V_{DD}}$	V
驱动工作电压	$ m V_{E}$	0		V_{DD} -35	V

2. 极限工作范围 (Ta=25℃, V_{SS}=0V)

参 数	符号	范 围	单 位	
电源电压	$V_{ m DD}$	-0.5~7.0	V	
驱动工作电压	$V_{\rm E}$	$V_{DD} + 0.5 \sim V_{DD} - 40$	V	
逻辑输入电压	V_{I1}	$-0.5 \sim V_{DD} + 0.5$	V	
FIP 驱动输出电压	V_{O2}	V_{EE} -0.5 \sim V_{DD} +0.5	V	
FIP 驱动输出电流	L流 I _{O2} -8		mA	
消耗功率	P_{D}	1200	mW	
工作温度	T_{OPT}	-20∼+70	$^{\circ}$	
存贮温度	T_{ST}	-65~+150	$^{\circ}$ C	

3. 电特性(Ta=-20℃~+70℃, V_{DD}=4.5V~5.5V, V_{SS}=0V, V_{EE}= V_{DD}-35V)

参 数	符号	测试条件	最小值	典型值	最大值	单位
高电平输出电压	V_{OH1}		$0.9~\mathrm{V_{DD}}$			V
低电平输出电压	V_{OL1}				1	V
低电平输出电压	V_{OL2}				0.4	V
高电平输出电流	I_{OH21}	$V_O = V_{DD} - 2V$	-3			mA
驱动漏电流	I _{OLEAK}	V _O = V _{DD} -35V, 驱动器关闭			-10	uA
输出下拉电阻	R_{L}	驱动器输出	50	100	150	ΚΩ
输入电流	I_{I}	$V_{I}=V_{DD}$ 或 V_{SS}			±1	uA
高电平输入电压	V_{IH}		$0.7~\mathrm{V_{DD}}$			V
低电平输入电压	$V_{\rm IL}$				$0.3 V_{DD}$	V
滞电电压	$V_{\rm H}$	CLK, DIN, STB		0.35		V
静态电流消耗	I_{DDdyn}	无负载时,无显示			5	mA


4. 开关特性(Ta=-20℃~+70℃, V_{DD}=4.5V~5.5V, V_{EE}= -30V)

参数	符号	测试条件	最小值	典型值	最大值	单位
保持延迟	T_{PLZ}	$CLK \rightarrow D_{OUT}$			300	ns
米 特延迟	T_{PZL}	$C_L=15pF$, $R_L=10 \text{ K}\Omega$			100	ns
下降时间	T_{THZ}	$C_L = 300 \text{ pF}$			120	us
最大时钟频率	F_{MAX}	占空比=50%	1			MHz
输入电容	C_{L}				15	pF

5. 时序条件(Ta=-20℃~+70℃, V_{DD}=4.5V~5.5V)

h .						
参 数	符号	测试条件	最小值	典型值	最大值	单位
时钟脉冲宽度	PW_{CLK}		400			ns
选通脉冲宽度	PW_{STB}		1			us
数据设置时间	t _{SETUP}		100			ns
数据保持时间	t _{HOLD}		100			ns
时间一选 通时间	t _{CLK-STB}	CLK ↑ →STB ↑	1			us
等待时间	t _{WAIT}	CLK ↑ →CLK ↑	1			us

应用图

