

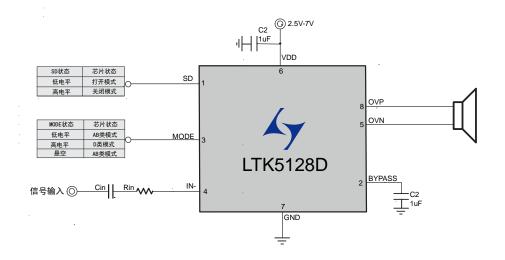
LTK5128D 高耐压 3Ω7.3W F类、单声道音频放大器

■ 概述

LTK5128D 是一款 4Ω6W、单声道 AB/D 类音频功率放大器。LTK5128D 通过一个 MODE 管脚可以方便地切换为 AB 类模式,完全消除 EMI 干扰。LTK5128D 的工作电压范围为 2.5-7V。在 D 类放大器模式下可以提供高于 90%的效率,新型的无滤波器结构可以省去传统 D 类放大器的输低通滤波器,LTK5128D 独有的 DRC (Dynamic range control) 技术,降低了大功率输出时,由于波形切顶带来的失真,相比同类产品,动态反应更加出色。LTK5128D 采用 ESOP-8 封装。

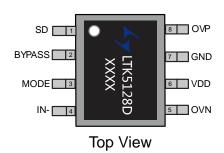
■ 应用

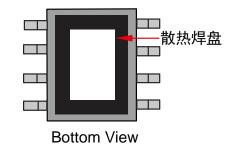
- 蓝牙音箱、智能音箱
- 导航仪、便携游戏机、
- 儿童玩具、DVD、MP3、MP4
- 智能家居等各类音频产品


■ 特性

- 输入电压范围 2.5V-7V
- 无滤波的 D 类/AB 类放大器、低静态电流和 低 EMI
- ▶ FM 模式无干扰
- 优异的爆破声抑制电路
- 超低底噪、超低失真
- 10% THD+N, VDD=7V, 4Ω+33UH 负载下提供 高达 6W 的输出功率
- 10% THD+N, VDD=7V, 3Ω +33UH 负载下 提 供高达 7.3W 的输出功率
- 过温保护、短路保护
- 关断电流 < 1ua

■ 封装


芯片型号	封装类型	封装尺寸
LTK5128D	ESOP-8	


■ 典型应用图

■ 管脚说明及定义

管脚编号	管脚名称	10	功能
1	SD	Ι	关断控制。高电平关断,低电平开启
2	BYPASS	10	内部共模参考电压,接电容下地
3	MODE	Ι	模式切换。高电平D类,低电平AB类. 悬空默认为AB类
4	IN	Ι	模拟输入端,反相
5	OVN	0	输出端负极
6	VDD	10	电源正端
7	GND	10	电源负端
8	OVP	0	输出端正极

■ 最大极限值

参数名称	符号	数值	单位
供电电压	$V_{ extsf{DD}}$	7V (MAX)	V
存储温度	$T_{ ext{STG}}$	-65°C-150°C	$^{\circ}\mathbb{C}$
结温度	$T_{ m J}$	160℃	$^{\circ}\mathbb{C}$
负载阻抗	R_L	≥2	Ω

■ 推荐工作范围

参数名称	符号	数值	单位
供电电压	$V_{ ext{DD}}$	3-6. 5V	V
工作环境温度	$T_{ ext{STG}}$	20°C to 35°C	$^{\circ}\mathbb{C}$
结温度	$T_{ m J}$	_	$^{\circ}\mathbb{C}$

附注: 为保证芯片安全和寿命,在实际应用中请严格按照推荐工作条件使用,否则,可能会损坏芯片。

■ ESD 信息

参数名称	符号	数值	单位
人体静电	HBM	±2000	V
机器模型静电	CDM	±300	$^{\circ}\mathbb{C}$

■ 基本电气特性

 A_v =20dB, T_A =25℃, 无特殊说明的项目均是在VDD=5V, 4Ω +33uH条件下测试:

A _v =20dB, T _A =25℃, 5 描述	符号	测试		最小值	典型值	最大值	单位	
静9态电流	$I_{ ext{ iny DD}}$	VDD =5	V, D类	3	5	6	mA	
		VDD =4.2V,AB类			8		mA	
关断电流	$I_{ ext{SHDN}}$	VDD=3V	to 5 V	_	1		uA	
静态底噪	Vn	VDD=5V , AV=	20DB, Awting		110		uV	
D类频率	F_{sw}	VDD=5	V		520		kHz	
输出失调电压	V_{os}	V _{IN} =0V			10		mV	
启动时间	$T_{ m start}$	Vdd=5V, By			174		MS	
增益	Av	D类模式,	$R_{\text{IN}}=27k$		≈ 20		DB	
电源关闭电压	Vdd_{sd}	SD=	=0		<1.6		V	
电源开启电压	Vdd_{open}	SD=	=0		>2.5		V	
		Vdd=	=7V		>1.8			
		_						
SD关断电压	Vsd_{sd}	Vdd=	=5V		>1.6		V	
		Vdd=	=4V		>1.4			
		Vdd=	=3V		>1.4			
	$ m Vsd_{open}$	Vdd=	=7V		<1.0			
		_					V	
SD开启电压		Vdd=5V			<0.9			
		Vdd=4V			<0.8			
			Vdd=3V		<0.7			
		Vdd=	=7V		>2.0			
		_						
D类开启电压	$MODE_{/D}$	Vdd=	=5V		>1.8		V	
		Vdd=4V			>1.6			
		Vdd=3V			>1.4			
		Vdd=			<1.4			
		_						
AB类开启电压	MODE/AB	Vdd=	=5V		<1.2		V	
	,	Vdd=			<1.0			
			Vdd=3V		<0.8			
过温保护	$O_{ ext{TP}}$	744 01			180		$^{\circ}$ C	
		I _{DS} =0. 5A	P MOSFET		150		mΩ	
静态导通电阻	$R_{ ext{DSON}}$	$V_{GS}=4.2V$	N MOSFET		120			
内置输入电阻	$R_{\rm s}$		11_11001 111		7K		KΩ	
内置反馈电阻	R _f				180K		KΩ	
效率	η _c				90		%	

● Class D功率

 A_v =20dB, T_A =25℃, 无特殊说明的项目均是在VDD=5V, 4Ω 条件下测试:

参数	符号	测试条件	测试条件		典型值	最大值	单位
		THD+N=10%,	V _{DD} =7V	I	7. 3	_	
		$f=1kHz$, $R_L=3\Omega$;	V _{DD} =6V	1	5. 3	_	
			V _{DD} =5V		3. 7		
输出功率	Po		V _{DD} =4.2V		2.6		W
		THD+N=10%,	V _{DD} =7V		6		
		$f=1kHz$, $R_L=4\Omega$	V _{DD} =6V		4.5		
			$V_{DD}=5V$		3. 1		
			V _{DD} =4.2V		2. 2		
总谐波失真加噪声	THD+N	$V_{DD}=5VP_{o}=1W, R_{L}=4\Omega$	f=1kHz	ı	0.065	_	%

■ 性能特性曲线

● 特性曲线测试条件(T_A=25°C)

描述	测试条件	编号
Input Amplitude VS. Output Amplitude	VDD=5V,RL=4Ω+33UH ,Class_D	图1
Output Power VS. THD+N _Class_D	RL=3Ω+33UH,A _V =20DB,Class_D	图2
	RL= 4Ω +33UH, A_V =20DB,Class_D	图3
Output Power VS.THD+N_Class_AB	RL= 4Ω , A_V = $20DB$, Class_AB	图4
Frequency VS.THD+N	VDD=5V,RL=4 Ω,A _V =20DB,PO=1W,Class_D	图5
Input Voltage VS.Power Crrent	VDD=3.0V-5V,Class_D	图6
Input Voltage VS. Maximum Output Power	RL=4Ω+33UH,THD=10%, Class_D	图7
Frequency Response	VDD=5V,RL=4Ω,Class_D	图8

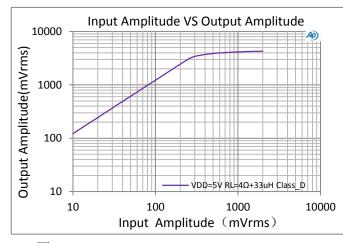


图1: Input Amplitude VS. Output Amplitude

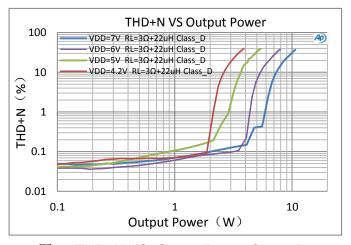


图2: THD+N VS .Output Power Class_D

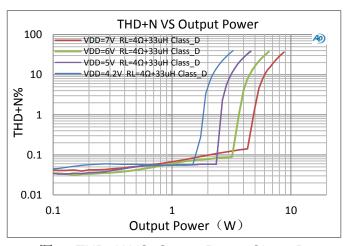


图3: THD+N VS .Output Power Class_D

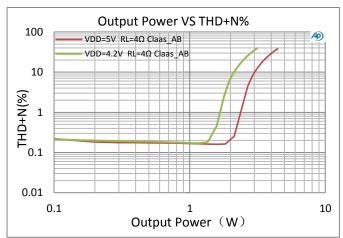


图4: THD+N VS. Output Power Class_AB

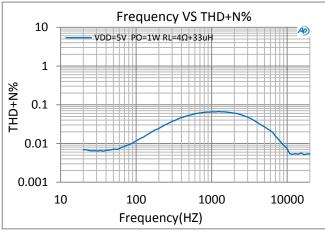


图5: Frequency VS.THD+N

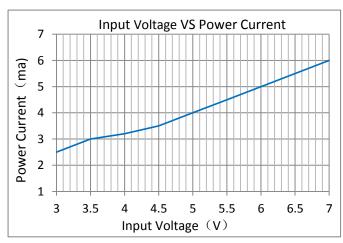


图6: Power Crrent VS. Suppy Voltage

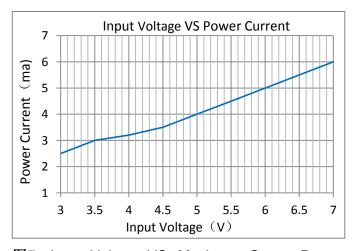


图7: Input Voltage VS. Maximum Output Power

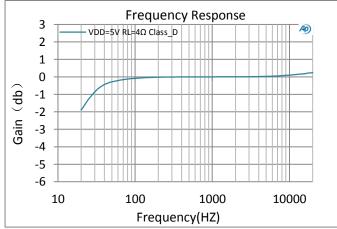


图8: Frequency Response

■ 应用说明

● SD管脚控制

SD管脚是芯片使能脚位。控制芯片打开和关闭, SD管脚为高电平时,功放芯片关断。SD管脚为低 电平时,功放芯片打开,正常工作。SD管脚不能 悬空。

SD管脚	芯片状态
低电平	打开状态
高电平	关闭状态

● MODE管脚控制

功放MODE管脚可以控制芯片AB类和D类的模式切换。 建议在FM模式时切换为AB类。

MODE管脚	芯片状态
高电平	D类模式
低电平	AB类模式
悬空	AB类模式

● 功放增益控制

D类模式时输出为(PWM信号)数字信号,AB类输出为模拟信号,其增益均可通过R_{IN}调节。

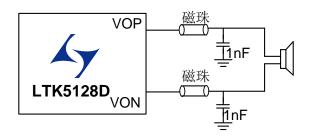
$$A_{V} = 2 \times \frac{180 \text{K}\Omega}{R_{IN} + 7 \text{K}\Omega}$$

Av为增益,通常用DB表示,上述计算结果单位为倍数、20Log倍数=DB。

RIN电阻的单位为 $K\Omega$ 、 $180K\Omega$ 为内部反馈电阻 (R_F), $7K\Omega$ 为内置串联电阻 (R_S), RIN由用户根据实际供电电压、输入幅度、和失真度定义。如RIN=27K时,=10.5倍、 A_V =20.4DB

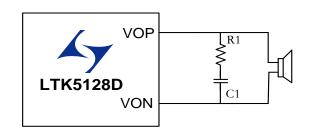
输入电容(CIN)和输入电阻(RIN)组成高通滤波器,其截止频率为:

$$f_C = \frac{1}{2\pi \times (R_{IN} + 7K) \times C_{IN}}$$


Cin电容选取较小值时,可以滤除从输入端耦合入的低频噪声,同时有助于减小开启时的POPO声

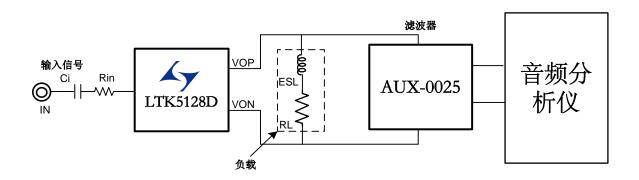
● Bypass电容

Byp电容是非常重要的,该电容的大小决定了功放芯片的开启时间,同时Byp电容的大小会影响芯片的电源抑制比、噪声、以及POP声等重要性能。建议将该电容设置为1uf,因该Byp的充电速度速度比输入信号端的充电速度越慢,POP声越小。


● EMI 处理

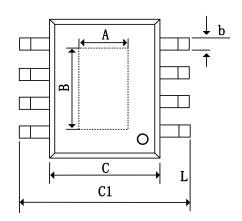
对于输出走线较长或靠近敏感器件时,建议加上 磁珠和电容,能有效减小EMI。器件靠近芯片放置。

● RC缓冲电路

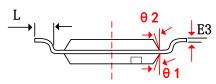

如喇叭负载阻抗值较小时,建议在输出端并一个电阻和一个电容来吸收电压尖峰,防止芯片工作异常。电阻推荐使用: $2\Omega-5\Omega$,电容推荐:500PF-10NF。

■ 测试方法

在测试D类模式时必须加滤波器测试。AUX-0025为滤波器。为了测试数据精准并符合实际应用,在RL负载端串联一个电感,模拟喇叭中的寄生电感。




■ PCB设计注意事项


- ▶ 电源供电脚(VDD)走线网络中如有过孔必须使用多孔连接,并加大过孔内径,不可使用单个过孔直接连接。
- ➤ 输入电容(Cin)、输入电阻(Rin)尽量靠近功放芯片管脚放置,走线最好使用包地方式,可以有效的抑制其他信号耦合的噪声。
- ▶ LTK5128D 的底部散热片建议焊接在 PCB 板上,用于芯片散热,建议 PCB 使用大面积敷铜来连接芯片中间的散热片,并有一定范围的露铜,帮助芯片散热。
- ▶ LTK5128D 输出连接到喇叭的管脚走线管脚尽可能的短,并且走线宽度需在 0.4mm 以上。

■ 芯片封装 ESOP-8

ESOP-8

r tota	Dimensions In Millimeters			Dimensions In Inches		
字符	Min	Nom	Max	Min	Nom	Max
A	2. 31	2. 40	2. 51	0.091	0.094	0.098
В	3. 20	3. 30	3. 40	0. 126	0.129	0. 132
b	0.33	0.42	0.51	0.013	0.017	0.020
С	3.8	3. 90	4.00	0.150	0. 154	0. 157
C1	5.8	6.00	6. 2	0. 228	0. 235	0. 244
C2	1.35	1.45	1.55	0.053	0.058	0.061
C3	0.05	0. 12	0. 15	0.004	0.007	0.010
D	4. 70	5.00	5. 1	0. 185	0. 190	0. 200
D1	1.35	1.60	1.75	0.053	0.06	0.069
е	1. 270 (BSC)			0. 050 (BSC)		
L	0.400	0.83	1. 27	0.016	0.035	0.050

声明:北京联辉科电子技术有限公司保留在任何时间、不另行通知的情况下对规格书的更改权。 北京联辉科电子技术有限公司提醒:请务必严格应用建议和推荐工作条件使用。如超出推荐工作条件以及不按应用建议使用,本公司不保证产品后续的任何售后问题.